• Title/Summary/Keyword: Steel column inspection

Search Result 79, Processing Time 0.023 seconds

Structural Behavior Evaluation of NRC Beam-Column Connections (NRC 보-기둥 접합부의 구조적 거동 평가)

  • Jeon, Ji-Hwan;Lee, Sang-Yun;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.73-80
    • /
    • 2022
  • In this study, details of NRC beam-column connections were developed in which beam and columns pre-assembled in factories using steel angles were bolted on site. The developed joint details are NRC-J type and NRC-JD type. NRC-J type is a method of tensile joining with TS bolts to the side and lower surfaces of the side plate of the NRC column and the end plate of the NRC beam. NRC-JD type has a rigid joint with high-strength bolts between the NRC beam and the side of the NRC column for shear, and with lap splices of reinforcing bar penetrating the joint and the beam main reinforcement for bending. For the seismic performance evaluation of the joint, three specimens were tested: an NRC-J specimen and NRC-JD specimen with NRC beam-column joint details, and an RC-J specimen with RC beam-column joint detail. As a result of the repeated lateral load test, the final failure mode of all specimens was the bending fracture of the beam at the beam-column interface. Compared to the RC-J specimen, the maximum strength of the specimen by the positive force was 10.1% and 29.6% higher in the NRC-J specimen and the NRC-JD specimen, respectively. Both NRC joint details were evaluated to secure ductility of 0.03 rad or more, the minimum total inter-story displacement angle required for the composite intermediate moment frame according to the KDS standard (KDS 41 31 00). At the slope by relative storey displacemet of 5.7%, the NRC-J specimen and the NRC-JD specimen had about 34.8% and 61.1% greater cumulative energy dissipation capacity than the RC specimen. The experimental strength of the NRC beam-column connection was evaluated to be 30% to 53% greater than the theoretical strength according to the KDS standard formula, and the standard formula evaluated the joint performance as a safety side.

Seismic Performance of Square RC Column Confined with Spirals (나선철근으로 횡구속된 정사각형 RC 기둥의 내진성능)

  • Ko, Seong Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.88-97
    • /
    • 2012
  • The objective of this research is to investigate the seismic performance and flexure-shear behavior of square reinforced concrete bridge piers with solid and hollow cross section. Test specimens were nonseismically designed with the aspect ratio 4.5 Two reinforced concrete columns were tested under constant axial load while subjected to lateral load reversals with increasing drift levels. Longitudinal steel ratio was 2.217 percent. The transverse reinforcement ratio As/($s{\cdot}h$), corresponding to 58 percent of the minimum lateral reinforcement required by Korean Bridge Design Specifications for seismic detailing, which represent existing columns not designed by the current seismic design specifications or designed by limited ductility concept. This study are to provide quantitative reference data for the limited ductility design concept and tendency for performance or damage assessment based on the performance levels such as cracking, yielding, collapse, etc. Failure behavior, ultimate displacement/drift ratio, displacement ductility, response modification factor, equivalent viscous damping ratio, residual deformation, effective stiffness, plastic hinge length, strain of reinforcements and nonlinear analysis are investigated and discussed in this paper.

Study on Reinforcement Effect of Circular RC Columns by Helical Bar Under Cyclic Lateral Load (반복 횡하중을 받는 원형 철근콘크리트 기둥의 Helical Bar 보강효과에 대한 연구)

  • Kim, Seong-Kyum;Park, Jong-Kwon;Han, Sang-Hee;Kim, Byung-Cheol;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.48-58
    • /
    • 2014
  • In this study, quasi-static according to the displacement-controlled (strain control) method tests on RC columns for seismic reinforcement performance in accordance with the provisions of the seismic design and construction before 1992 design code for highway bridges in korea. Used reinforcement that improves the performance of Inorganic Helical Bar, a kind of alloy steel, circular columns were tested outside the seismic reinforcing. In the experiment, fracture behavior, lateral load-displacement relation, ductility and energy assessment evaluation was performed through tests. The variables in experimental are section force of reinforcement, spiral reinforcement spacing, reinforcement method. Improved seismic performance and effect were confirmed through quasi-static test experiments. The results of study confirmed determination the appropriate size of reinforcement, reinforcement forces, spacing and selection of the type required, furthermore, not only mechanical reinforcement but also substitution of high-strength concrete reinforced with concrete cover improved seismic performance.

Evaluation of Service Life in RC Column under Chloride Attack through Field Investigation: Deterministic and Probabilistic Approaches (염해 실태조사를 통한 철근 콘크리트 교각의 내구수명 평가 - 결정론적 및 확률론적 해석방법)

  • Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.67-74
    • /
    • 2015
  • RC (Reinforced Concrete) structures are considered as cost-benefit and durable however performances of structural safety and durability are degraded due to steel corrosion. Service life in RC structure is differently evaluated due to different local environmental conditions even if it is exposed to the same chloride attack. In the paper, 25 concrete cores from field investigation are obtained from 4 RC columns with duration of 3.5~4.5 years exposed to sea water. Through total chloride content measurement, surface chloride contents and apparent diffusion coefficients are evaluated. Service life of the target structure is estimated through deterministic method based on Fick's $2^{nd}$ Law and probabilistic method based on durability failure probability, respectively. Probability method is evaluated to be more conservative and relatively decreased service life is evaluated in tidal zone and splash zone over 40.0 m. Chloride penetration behavior with coring location from sea level and the present limitations of durability design method are investigated in the paper.

An Experimental Study on Seismic Performance Evaluation of Retrofitted Column of FRP Seismic Reinforcement that can be Emergency Construction (긴급시공이 가능한 FRP 내진보강재로 보강된 기둥의 내진성능평가 실험)

  • Kim, Jin-Sup;Kwon, Min-Ho;Seo, Hyun-Su;Lim, Jeong-Hee;Kim, Dong-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.21-30
    • /
    • 2013
  • As increasing number of large-size earthquake, the social interest of seismic retrofitting of RC structure is growing. Especially, the RC columns that are not reflected seismic design can not resist lateral loads by the earthquake. The brittle fracture of Non-seismic designed columns lead to full collapse of the building. Thus, the emergency columns reinforcement method is needed. That have a fast construction time, do not cause damage to the column. In the past, cross-sectional expansion method, a steel plate reinforcing method is applied mainly, but in recent years, carbon fiber sheet taking advantage of FRP (Fiber Reinforced Polymer) is widely used. In this study, retrofitting effect of seismic performance of FRP seismic reinforcement, which is possible to emergency construction, was examined. Reinforced concrete specimens were constructed to experimental study. The seismic performence of specimes retrifitted with FRP seismic reinforcement were evaluated. As a result, the seismic performance of specimen reinforced with FRP seismic reinforcement has been improved.

Analysis on the Shear Behavior of Existing Reinforced Concrete Beam-Column Structures Infilled with U-Type Precast Wall Panel (U형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 보-기둥 구조물의 전단 거동 분석)

  • Ha, Soo-Kyoung;Son, Guk-Won;Yu, Sung-Yong;Ju, Ho-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.18-28
    • /
    • 2015
  • The purpose of this study is to develop a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were performed on one unreinforced beam-column specimen and two reinforced specimens with U-type precast wall panels. The results were analyzed to find that the specimen with anchored connection experienced shear failure, while the other specimen with steel plate connection principally manifested flexural failure. The ultimate strength of the specimens was determined to be the weaker of the shear strength of top connection and flexural strength at the critical section of precast panel. In this setup of U-type panel specimens, if a push loading is applied to the reinforced concrete column on one side and push the precast concrete panel, a pull loading from upper shear connection is to be applied to the other side of the top shear connection of precast panel. Since the composite flexural behavior of the two members govern the total behavior during the push loading process, the ultimate horizontal resistance of this specimen was not directly influenced by shear strength at the top connection of precast panel. However, the RC column and PC wall panel member mainly exhibited non-composite behavior during the pull loading process. The ultimate horizontal resistance was directly influenced by the shear strength of top connection because the pull loading from the beam applied directly to the upper shear connection. The analytical result for the internal shear resistance at the connection pursuant to the anchor shear design of ACI 318M-11 Appendix-D, agreed with the experimental result based on the elastic analysis of Midas-Zen by using the largest loading from experiment.

A Service Life Prediction for Unsound Concrete Under Carbonation Through Probability of Durable Failure (탄산화에 노출된 콘크리트 취약부의 확률론적 내구수명 평가)

  • Kwon, Seung Jun;Park, Sang Soon;Nam, Sang Hyeok;Lho, Byeong Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.49-58
    • /
    • 2008
  • Generally, steel corrosion occurs in concrete structures due to carbonation in down-town area and underground site and it propagates to degradation of structural performance. In general diagnosis and inspection, only carbonation depth in sound concrete is evaluated but unsound concrete such as joint and cracked area may occur easily in a concrete member due to construction process. In this study, field survey of carbonation for RC columns in down-town area is performed and carbonation depth in joint and cracked concrete including sound area is measured. Probability of durable failure with time is calculated through probability variables such as concrete cover depth and carbonation depth which are obtained from field survey. In addition, service life of the structures is predicted based on the intended probability of durable failure in domestic concrete specification. It is evaluated that in a RC column, various service life is predicted due to local condition and it is rapidly decreased with insufficient cover depth and growth of crack width. It is also evaluated that obtaining cover depth and quality of concrete is very important because the probability of durable failure is closely related with C.O.V. of cover depth.

Damage estimation for structural safety evaluation using dynamic displace measurement (구조안전도 평가를 위한 동적변위 기반 손상도 추정 기법 개발)

  • Shin, Yoon-Soo;Kim, Junhee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.87-94
    • /
    • 2019
  • Recently, the advance of accurate dynamic displacement measurement devices, such as GPS, computer vision, and optic laser sensor, has enhanced the structural monitoring technology. In this study, the dynamic displacement data was used to verify the applicability of the structural physical parameter estimation method through subspace system identification. The subspace system identification theory for estimating state-space model from measured data and physics-based interpretation for deriving the physical parameter of the estimated system are presented. Three-degree-freedom steel structures were fabricated for the experimental verification of the theory in this study. Laser displacement sensor and accelerometer were used to measure the displacement data of each floor and the acceleration data of the shaking table. Discrete state-space model generated from measured data was verified for precision. The discrete state-space model generated from the measured data extracted the floor stiffness of the building after accuracy verification. In addition, based on the story stiffness extracted from the state space model, five column stiffening and damage samples were set up to extract the change rate of story stiffness for each sample. As a result, in case of reinforcement and damage under the same condition, the stiffness change showed a high matching rate.

A Study on Seismic Performance of External Reinforcement for Unreinforced Masonry Buildings (비보강 조적조 건축물의 외부 보강에 따른 내진성능 연구)

  • Jong-Yeon Kim;Jong Kang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.43-52
    • /
    • 2024
  • In this study, we evaluated the seismic performance of a masonry building that was not designed to be earthquake-resistant and attempted to improve the seismic performance by adopting a seismic reinforcement method on the exterior of the building. In addition, the building seismic design standards and commentary(KDS 41 17 00:2019) and existing facility(building) seismic performance evaluation methods were applied to evaluate seismic performance, and a pushover analysis was performed using non-linear static analysis. As the result of this study, it was determined that seismic reinforcement was urgent because the distribution rate of earthquake-resistant design of houses in Korea was low and masonry structures accounted for a large proportion of houses. When reinforcing the steel beam-column+brace frame in a masonry building, the story drift angle was 0.043% in the X direction and 0.047% in the Y direction, indicating that it satisfied the regulations. The gravity load resistance capacity by performance level was judged to be a safe building because it was habitable in both X and Y directions. In conclusion, it is believed that the livability and convenience of the house can be secured by reinforcing the exterior of the building and the seismic performance and behavior of the structure can be clearly predicted.