• Title/Summary/Keyword: Steel casting

Search Result 339, Processing Time 0.023 seconds

Effect of Sludge Formation on the Thickness of Die Soldering Reaction Layer in Al-9Si-0.3Mg Casting Alloy (Al-9Si-0.3Mg 주조용 합금에서 Sludge 형성이 금형소착 반응층 두께에 미치는 영향)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.30 no.2
    • /
    • pp.76-82
    • /
    • 2010
  • Effect of reaction time and sludge formation on the thickness of die soldering reaction layer has been studied in Al-9Si-0.3Mg casting alloy. Ternary ${\alpha}_{bcc}-Al_8Fe_2Si$ and ${\alpha}_{hcp}-Al_8Fe_2Si$ intermetallic compounds formed at the interface of SKD61 tool steel by interaction diffusion of Al, Fe and Si atoms after 0.5hr and 6hr immersion time, respectively. Binary ${\eta}-Fe_2Al_5$ additionally formed at the interface of SKD61 tool steel after 10hr immersion time. Thickness of soldering reaction layer in die surface increased as immersion time increased from 0.5hr to 24hr. Sludge formation was ascertained in the samples which were immersed in the melts more than 10hr. Reaction of die soldering after sludge formation was more accelerated than that of before sludge formation due to a decrease in Fe content, followed by higher diffusion rate of Al in the melt by sludge formation.

Permanent Mold Casting of Ti-6.0wt%Al-4.0wt%V Alloy Melt (Ti-6.0wt%Al-4.0wt%V 합금 용탕의 금형 주조)

  • Kang, Jang-Won;Kim, Myung-Yong;Lee, Sang-Kil;Lee, Hae-Jung;Kim, Kyung-Hoon;Lee, Hyo-Soo;Lim, Sung-Chul;Kwon, Huck-Chon
    • Journal of Korea Foundry Society
    • /
    • v.27 no.3
    • /
    • pp.135-139
    • /
    • 2007
  • To produce higher quality of titanium casting at a lower cost, the new titanium casting technology by using a permanent metal mold was developed and applied to fabricate hip joint for biomedical application. The present study was carried out to investigate the reactivity and fluidity of the Ti-6.0 wt%Al-4.0 wt%V alloy with metal mold by applying various ceramic powders coating on the mold surface. The molten titanium for manufacturing hip joint was poured into steel mold. No reaction layer was formed on the surface of specimens fabricated steel mold coated with $Y_2O_3$ powder.

Metal Fuel Development and Verification for Prototype Generation IV Sodium-Cooled Fast Reactor

  • Lee, Chan Bock;Cheon, Jin Sik;Kim, Sung Ho;Park, Jeong-Yong;Joo, Hyung-Kook
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1096-1108
    • /
    • 2016
  • Metal fuel is being developed for the prototype generation-IV sodium-cooled fast reactor (PGSFR) to be built by 2028. U-Zr fuel is a driver for the initial core of the PGSFR, and U-transuranics (TRU)-Zr fuel will gradually replace U-Zr fuel through its qualification in the PGSFR. Based on the vast worldwide experiences of U-Zr fuel, work on U-Zr fuel is focused on fuel design, fabrication of fuel components, and fuel verification tests. U-TRU-Zr fuel uses TRU recovered through pyroelectrochemical processing of spent PWR (pressurized water reactor) fuels, which contains highly radioactive minor actinides and chemically active lanthanide or rare earth elements as carryover impurities. An advanced fuel slug casting system, which can prevent vaporization of volatile elements through a control of the atmospheric pressure of the casting chamber and also deal with chemically active lanthanide elements using protective coatings in the casting crucible, was developed. Fuel cladding of the ferritic-martensitic steel FC92, which has higher mechanical strength at a high temperature than conventional HT9 cladding, was developed and fabricated, and is being irradiated in the fast reactor.

The Effect of Injection Velocity on Liquid Segregation of Grain Controlled Rheological Material Considering Asymmetry Multi Thickness Variation (비대칭 다단 두께 변화를 고려한 결정입 제어 반용융 알루미늄 소재의 캐스팅에서 사출속도가 액상편석에 미치는 영향)

  • Seo P. K.;Jung Y. S.;Kang C. G.
    • Transactions of Materials Processing
    • /
    • v.14 no.4 s.76
    • /
    • pp.338-350
    • /
    • 2005
  • Recently, in the field of automobile industry, to solve the problem of reducing the weight of automobile for the improvement of fuel efficiency and the protection of environment, the aluminum alloy parts have been substituted for the steel parts. However, the aluminum alloy does not have as good mechanical property as the steel part. To improve the mechanical property, the semi-solid die casting process is performed to make automobile parts. In the fabrication of semisolid material the control of the liquid segregation is very important to improve the material properties of aluminum alloy. In the present paper we examine the influence of the liquid segregation by the injection conditions in the semi-solid die casting has been investigated.

Static/Dynamic Finite Element Analysis of Lightweight Suspension Part Fabricated by Application of phase Change Process (상변환 응용 경량 Suspension 부품의 정적/동적 유한요소해석)

  • 이정우;신현기;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.848-851
    • /
    • 2002
  • In the field of automobile industry, lightweight problems are very important in terms of reducing fuel and protecting environment. To satisfy these demands, the attempt to substitute aluminum automobile components for cast steel part has been actively carried out. To fabricate the aluminum automobile suspension part that has the same mechanical properties with cast steel part, design conditions such as shape and dimension of part shall be established. Therefore in this study, shape and dimension conditions of suspension part were proposed. Aluminum automobile suspension part was fabricated by semi-solid die-casting process under the obtained design conditions. Moreover to evaluate the possibility of application to the automobile component, stress and fatigue analysis were performed by using ABAQUS S/W and compared with those of conventional automobile suspension part.

  • PDF

FABRICATION OF GD CONTAINING DUPLEX STAINLESS STEEL SHEET FOR NEUTRON ABSORBING STRUCTURAL MATERIALS

  • Choi, Yong;Moon, Byung M.;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.689-694
    • /
    • 2013
  • A duplex stainless steel sheet with 1 wt.% gadolinium was fabricated for a neutron absorbing material with high strength, excellent corrosion resistance, and low cost as well as high neutron absorption capability. The microstructure of the as-cast specimen has typical duplex phases including 31% ferrite and 69% austenite. Main alloy elements like chromium (Cr), nickel (Ni), and gadolinium (Gd) are relatively uniformly distributed in the matrix. Gadolinium rich precipitates were present in the grains and at the grain boundaries. The solution treatment at $1070^{\circ}$ for 50 minutes followed by the hot-rolling above $950^{\circ}$ after keeping the sheet at $1200^{\circ}$ for 1.5 hours are important points of the optimum condition to produce a 6 mm-thick plate without cracking.

Effect of the Solution Treatment & Aging Treatment on the Microstructure & Mechanical Property of 17-4 PH Stainless Steel (용체화처리 및 시효처리가 17-4 석출경화형 스테인레스강 정밀주조품의 미세조직 및 기계적 성질에 미치는 영향)

  • Yu, Sung-Kon;Lee, Kyong-Whoan;Ra, Tae-Yeob
    • Journal of Korea Foundry Society
    • /
    • v.12 no.5
    • /
    • pp.397-402
    • /
    • 1992
  • The effect of the solution & aging treatment on the tensile strength, yield strength, elongation, reduction of area, hardness was studied in the 17-4 PH stainless steel. SEM pictures were also taken in order to examine the fracture surfaces and precipitated particles. X-ray diffraction patterns for the heat treated samples were also observed. Mechanical properties of the heat treated samples were superior to those of as cast samples. Tensile strength, yield strength, hardeness decreased with the increase of aging temperature. On the other hand, elongation and reduction of area increased as the aging temperature increased.

  • PDF

Dynamic Crack Initiation of 17-4PH Casting Steel for Various Notch Radius (다양한 노치 반경을 갖는 17-4PH강의 동적균열개시 특성)

  • 박성욱;김덕회;김재훈;문순일
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.160-163
    • /
    • 2003
  • In this study, intrinsic dynamic fracture toughness of 17-4PH casting steel is evaluated from the apparent dynamic fracture toughness of notched specimen. Notch radius of notched specimen is manufactured from 0.1mm to 4mm. The results shows that dynamic fracture toughness decreases with decreasing of notch root radius above critical notch roof radius. The true dynamic fracture toughness can be predicted from test results of apparent dynamic fracture toughness measured by using notched specimen.

  • PDF

Strength Analysis of Die-cast Aluminum-alloy Brake Pedals for use in Lightweight Cars (자동차 경량화를 위한 다이캐스팅용 알루미늄합금 브레이크 페달의 강도해석)

  • Cho, Seunghyun;Jang, Junyoung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.2
    • /
    • pp.138-142
    • /
    • 2016
  • In this study, a strength analysis was performed to assess die-cast aluminum alloy brake pedals as an improved alternative to wrought alloys. Aluminum brake pedal shapes are considered to be suitable for the die-casting process. The strength criterion of Volvo trucks was used as the criterion for the pedal strength. The results of this analysis showed that the frame thickness of the aluminum brake pedal must be increased from 12 mm to 18 mm to have a strength superior to that of a steel brake pedal. Additionally, the stress and weight of the aluminum brake pedal were found to be approximately 24% and 26% lower than those of the steel brake pedal, respectively. Mounting tests and strength assessments verified that the proposed die-cast aluminum alloy brake pedal demonstrated sufficient strength.

An analysis of deformation behavior on dynamic bulging in the high speed continuous casting (고속 연속주조에 있어서 동적 벌징의 변형거동 해석)

  • 강충길;윤광식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1217-1226
    • /
    • 1988
  • This paper shows an deformation behavior of steel cast slabs, which is used to prevent internal cracks of a slab in an unbending zone, in case of hot charge rolling(HCR) and hot direct rolling(HDR). The value of moving strand shell bulging between two supporting rollers under ferrostatic pressure has been computed in terms of creep and elastic-plasticity and for high strand surface temperature and high casting speed V=1.4-2.2m/min. The strain and strain rate distributions in solidified shell undergoes a series of bulging are calculated with boundary condition a very closed to continuous steel cast slabs productions.