• 제목/요약/키워드: Steel Structural Work

검색결과 338건 처리시간 0.024초

말레이지아 바쿤 가배수로 터널의 철근콘크리트 라이닝 설계 (Design of the reinforced concrete lining in bakun diversion tunnels)

  • 지왕률;임태정
    • 터널과지하공간
    • /
    • 제9권1호
    • /
    • pp.20-26
    • /
    • 1999
  • 바쿤 수력발전 프로젝트에서 발전댐의 건설은 가배수로 터널의 완공에 따라 시작되믈 공사기간 측면에서 가배수로 터널의 완공시기는 전체 프로젝트에서 매우 중요한 요소이다. 바쿤 가배수로 터널의 내부단면은 물의 저항을 최대한 줄이기 위하여 원형으로 설계되었으며, 내부직경 12m 인 3개의 터널로 구성되어 있다. 일반적으로 터널 시공과정의 마무리 단계에서 수행되는 터널 라이닝 작업은 굴착 및 지반보강 공정과 더불어 시공비와 공사기간에 많은 영향을 끼치므로 적정한 수준의 라이닝 설계가 요구된다. 바쿤 가배수로 터널에 있어, 라이니으이 두께는현장여건에 따라 다소 차이가 있으나 500~700mm로 타설되었다. 가배수로 터널의 원설계안에 따르면 터널내 전체 라이닝에 필요한 보강콘크리트의 철근량은 5,985 ton 이었으나, 암반의 상태와 여러종류의 하중조건을 고려하여 5종류의 철근 보강 콘크리트 유형으로 구분한 후에 각각의 유형에 따른 상세설계를 통하여 최종적으로 소요 철근량을 2,178 ton으로 감소시킬 수 있었다. 감소된 양은 원설계에서 제시된 양의 절반에 해당되며, 이에 따라 공사기간 및 건설비용을 절감시킬 수 있었다.

  • PDF

Equivalent frame model and shell element for modeling of in-plane behavior of Unreinforced Brick Masonry buildings

  • Kheirollahi, Mohammad
    • Structural Engineering and Mechanics
    • /
    • 제46권2호
    • /
    • pp.213-229
    • /
    • 2013
  • Although performance based assessment procedures are mainly developed for reinforced concrete and steel buildings, URM (Unreinforced Masonry) buildings occupy significant portion of buildings in earthquake prone areas of the world as well as in IRAN. Variability of material properties, non-engineered nature of the construction and difficulties in structural analysis of masonry walls make analysis of URM buildings challenging. Despite sophisticated finite element models satisfy the modeling requirements, extensive experimental data for definition of material behavior and high computational resources are needed. Recently, nonlinear equivalent frame models which are developed assigning lumped plastic hinges to isotropic and homogenous equivalent frame elements are used for nonlinear modeling of URM buildings. The equivalent frame models are not novel for the analysis of masonry structures, but the actual potentialities have not yet been completely studied, particularly for non-linear applications. In the present paper an effective tool for the non-linear static analysis of 2D masonry walls is presented. The work presented in this study is about performance assessment of unreinforced brick masonry buildings through nonlinear equivalent frame modeling technique. Reliability of the proposed models is tested with a reversed cyclic experiment conducted on a full scale, two-story URM building at the University of Pavia. The pushover curves were found to provide good agreement with the experimental backbone curves. Furthermore, the results of analysis show that EFM (Equivalent Frame Model) with Dolce RO (rigid offset zone) and shell element have good agreement with finite element software and experimental results.

Damage detection on output-only monitoring of dynamic curvature in composite decks

  • Domaneschi, M.;Sigurdardottir, D.;Glisic, B.
    • Structural Monitoring and Maintenance
    • /
    • 제4권1호
    • /
    • pp.1-15
    • /
    • 2017
  • Installation of sensors networks for continuous in-service monitoring of structures and their efficiency conditions is a current research trend of paramount interest. On-line monitoring systems could be strategically useful for road infrastructures, which are expected to perform efficiently and be self-diagnostic, also in emergency scenarios. This work researches damage detection in composite concrete-steel structures that are typical for highway overpasses and bridges. The techniques herein proposed assume that typical damage in the deck occurs in form of delamination and cracking, and that it affects the peak power spectral density of dynamic curvature. The investigation is performed by combining results of measurements collected by long-gauge fiber optic strain sensors installed on monitored structure and a statistic approach. A finite element model has been also prepared and validated for deepening peculiar aspects of the investigation and the availability of the method. The proposed method for real time applications is able to detect a documented unusual behavior (e.g., damage or deterioration) through long-gauge fiber optic strain sensors measurements and a probabilistic study of the dynamic curvature power spectral density.

암스테르담 거래소에서 보이는 근대성에 관한 연구 - 베를라헤의 빌라 프로젝트가 암스테르담의 거래소의 디자인에 미친 영향에 관하여 - (H. P. Berlage's Modern in The Amsterdam Exchange - The Amsterdam Exchange and H. P. Berlage's Villa Project between 1892 and 1896 -)

  • 강태웅
    • 한국실내디자인학회논문집
    • /
    • 제15권3호
    • /
    • pp.14-23
    • /
    • 2006
  • As a proto-modernist work the Amsterdam Exchange has been regarded as a specimen of Structural Rationalist's architecture. Because of its ma]or steel structure, use of geometry, and reminiscence of Gothic the designer of the building was labeled by Kenneth Frampton as one of the apostles of Viollet le Duc. The architect was Hendrick Petrus Berlage. Contrary to above Nicolaus Pevsner claimed that Berlage's architectural discourse was 'Anti-Rational' because of its anachronistic formal language, Expressionism. In terms of structure Berlage's idea is rational, whilst formally 'Anti-Rational'. These polarised view points were due to the legacies of Modern Architecture that was controled by hegemonic figures in terms not only of practical field but of historiography. The hegemonic figures wanted to see Berlage as what they wanted to see. With this idea, this paper is one of endeavours to collect fragmented history in the early modern architecture. The Amsterdam Exchange has a long term story until the opening. Without understanding the story we have to withhold an evaluation of Berlage's architecture.

Seismic behavior enhancement of frame structure considering parameter sensitivity of self-centering braces

  • Xu, Longhe;Xie, Xingsi;Yan, Xintong;Li, Zhongxian
    • Structural Engineering and Mechanics
    • /
    • 제71권1호
    • /
    • pp.45-56
    • /
    • 2019
  • A modified mechanical model of pre-pressed spring self-centering energy dissipation (PS-SCED) brace is proposed, and the hysteresis band is distinguished by the indication of relevant state variables. The MDOF frame system equipped with the braces is formulated in an incremental form of linear acceleration method. A multi-objective genetic algorithm (GA) based brace parameter optimization method is developed to obtain an optimal solution from the primary design scheme. Parameter sensitivities derived by the direct differentiation method are used to modify the change rate of parameters in the GA operator. A case study is conducted on a steel braced frame to illustrate the effect of brace parameters on node displacements, and validate the feasibility of the modified mechanical model. The optimization results and computational process information are compared among three cases of different strategies of parameter change as well. The accuracy is also verified by the calculation results of finite element model. This work can help the applications of PS-SCED brace optimization related to parameter sensitivity, and fulfill the systematic design procedure of PS-SCED brace-structure system with completed and prospective consequences.

Iron oxide nanopowder synthesized by electroerosion dispersion (EED) - Properties and potential for microwave applications

  • Halbedel, Bernd;Prikhna, Tatiana;Quiroz, Pamela;Schawohl, Jens;Kups, Thomas;Monastyrov, Mykola
    • Current Applied Physics
    • /
    • 제18권11호
    • /
    • pp.1410-1414
    • /
    • 2018
  • Magnetic nanoparticles (MNP) have attracted considerable interest in many fields of research and applied science due to their impressive properties. In the past, especially biomedical problems have promoted the development of MNPs. For technical applications e.g. wastewater treatment and absorption of electromagnetic waves, the existing synthesis approaches are too expensive and/or the producible quantities are too low. In this work we present a method for simple preparation of size-controlled magnetic iron oxide nanoparticles by electroerosion dispersion (EED) of carbon steel in water. We describe the synthesis method, the laboratory installation and discuss the structural, chemical and electromagnetic properties of the synthetized EED powders as well as their applicability for microwave absorption compared to other available ferrite powders.

Analysis of key elements of single-layer dome structures against progressive collapse

  • Zhang, Qian;Huang, Wenxing;Xu, Yixiang;Cai, Jianguo;Wang, Fang;Feng, Jian
    • Steel and Composite Structures
    • /
    • 제42권2호
    • /
    • pp.257-264
    • /
    • 2022
  • The analysis of the progressive collapse resistance of structures is a well-known issue among structural engineers. Large-span reticulated dome structures are commonly utilized in large public buildings, necessitating research into their progressive collapse resistance to assure user safety. The most significant part of improving the structural resilience of reticulated domes is to evaluate their key elements. Based on a stiffness-based evaluation approach, this work offers a calculating procedure for element importance coefficient. For both original and damaged structures, evaluations are carried out using the global stiffness matrix and the determinant. The Kiewitt, Schwedler, and Sunflower reticulated domes are investigated to explore the distribution characteristic of element importance coefficients in the single-layer dome structures. Moreover, the influences of the load levels, load distributions, geometric parameters and topological features are also discussed. The results can be regarded as the initial concept design reference for single-layer reticulated domes.

Nonlinear structural finite element model updating with a focus on model uncertainty

  • Mehrdad, Ebrahimi;Reza Karami, Mohammadi;Elnaz, Nobahar;Ehsan Noroozinejad, Farsangi
    • Earthquakes and Structures
    • /
    • 제23권6호
    • /
    • pp.549-580
    • /
    • 2022
  • This paper assesses the influences of modeling assumptions and uncertainties on the performance of the non-linear finite element (FE) model updating procedure and model clustering method. The results of a shaking table test on a four-story steel moment-resisting frame are employed for both calibrations and clustering of the FE models. In the first part, simple to detailed non-linear FE models of the test frame is calibrated to minimize the difference between the various data features of the models and the structure. To investigate the effect of the specified data feature, four of which include the acceleration, displacement, hysteretic energy, and instantaneous features of responses, have been considered. In the last part of the work, a model-based clustering approach to group models of a four-story frame with similar behavior is introduced to detect abnormal ones. The approach is a composition of property derivation, outlier removal based on k-Nearest neighbors, and a K-means clustering approach using specified data features. The clustering results showed correlations among similar models. Moreover, it also helped to detect the best strategy for modeling different structural components.

Dynamic analysis by impact load in viscoelastic sandwich plates with FRP layer utilizing numerical method

  • Bayati, Mohammad Reza;Mazaheri, Hamid;Bidgoli, Mahmood Rabani
    • Steel and Composite Structures
    • /
    • 제43권2호
    • /
    • pp.229-240
    • /
    • 2022
  • The main objective of this work is presenting a mathematical model for the concrete slab with fiber reinforced polymer (FRP) layer under the impact load. Impacts are assumed to occur normally over the top slab and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The structure is assumed viscoelastic based on Kelvin-Voigt model. Based on the sinusoidal shear deformation theory (SSDT), energy method and Hamilton's principle, the motion equations are derived. Applying DQM, the dynamic deflection and contact force of the structure is calculated numerically so that the effects of mass, velocity and height of impactor, boundary conditions, FRP layer, structural damping and geometrical parameters of structure are shown on the dynamic deflection and contact force of system. Results show that considering structural damping leads to lower dynamic deflection and contact force. In addition, increasing the impact velocity of impactor yields to increases in the maximum contact force and deflection while the contact duration is decreased. The result shows that the contact force and the central deflection of the structure decreases and the contact time decreases with assuming FRP layer.

변수분리의 원리에 의한 철근콘크리트 평면 뼈대 구조물의 최적화 (Optimization of RC Plane Foames Based on The Principle of Divided Parameters)

  • 정영식;김봉익
    • 콘크리트학회지
    • /
    • 제9권1호
    • /
    • pp.133-141
    • /
    • 1997
  • 본 연구에서는 사각형단면을 가진 철근콘크리트구조물의 한 최적설계방법을 제시하고자 한다. 철근콘크리트는 한 단면이 2가지의 재료로 구성되어 있으므로 이로인해 야기될 수 잇는 어려움을 해소하기 위해 변수분리의 원리를 도입하였다. 이 원리에 사용된 설계변수 및 제약조건은 외부 및 내부의 두 그룹으로 분류하고, 최적화과정도 외부 및 내부로 나누어진다. 최적화기법에는 Pattern Search을 수정한 Modified Pattern search 방법을 제시하며, 이의 정확도를 여러 가지의 다른 최적화기법들과 서로 비교함으로 이 방법의 우수성을 입증하였다. 이 방법으로부터 얻어지는 모든 설계는 하나의 최적설계이며 ACI318-89의 규정을 모두 만족하는 설계이다.