• Title/Summary/Keyword: Steel Slag

Search Result 438, Processing Time 0.024 seconds

Effect of Welding Condition on Microstructure of Transient Zone in Overlay Weld of 3Cr-1Mo Steel/STS-309L (3Cr-1Mo강/STS-309L 오버레이 용접부의 천이영역 조직에 미치는 용접조건의 영향)

  • 김동진;김병훈;지병하;김정태;김성곤;강정윤;박화순
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.176-176
    • /
    • 2000
  • Recently developed Austenite stainless steel,309L was to overlay on 3Cr-1Mo-V-Ti-B steels, using Electroslag welding process, which wide electrodes were adopted. Transition region in welding interlayer relating to disbonding crack was investigated. Also. the effect of welding condition on the width of transition region and coarsening grains of the austenite were studied.1) With increasing welding speed the width of martensite at transient region was increased, but the amount of delta ferrite in weld metal was reduced, being fine grained.2) The form of martensite at the transition region was occured by reversible transition region, leading to increasing Ms point.3) With increasing welding speed, the grain of austenite formed at the welding interface was finer. With increasing welding current under the same welding speed, the grain size of the austenite was finer. At high current, original grain size of the austenite is coarse, but the austenite has fine grains because the austenite was transformed to martensite during cooling.4) In the case of high welding speed, the width of martensite at the welding interface was increased, but the grain size of austenite at the welding interface was finer. This indicates that the inhibition of disbonding crack may be achieved through dispersening fine carbides in the grain boudary.(Received August 3, 1999)

Effect of Welding Condition on Microstructure of Transient Zone in Overlay Weld of 3Cr-1Mo Steel/STS-309L (3Cr-1Mo강/STS-309L 오버레이 용접부의 천이영역 조직에 미치는 용접조건의 영향)

  • 김동진;김병훈;지병하;김정태;김성곤;강정윤;박화순
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.49-56
    • /
    • 2000
  • Recently developed Austenite stainless steel, 309L was used to overlay on 3Cr-1Mo-V-Ti-B steels, using Electroslag welding process, which wide electrodes were adopted. Transition region in welding interlayer relating to disbonding crack was investigated. Also, the effect of welding condition on the width of transition region and coarsening grains of the austenite were studied. 1) With increasing welding speed the width of martensite at transient region was increased, but the amount of delta ferrite in weld metal was reduced, being fine grained. 2) The form of martensite at the transition region was occurred by reversible transformation during cooling since the interdiffusion of Cr and Ni from weld metal and Fe and C from base metals at the transition region, causes to lowering the concentration of Cr and Ni at the transition region, leading to increasing Ms point. 3) With increasing welding speed, the grain of austenite formed at the welding interface was finer. With increasing welding current under the same welding speed, the grain size of the austenite was finer. At high current, original grain size of the austenite is coarse, but the austenite has fine grains because the austenite was transformed to martensite during cooling. 4) In the case of high welding speed, the width of martensite at the welding interface was increased, but the grain size of austenite at the welding interface was finer. This indicates that the inhibition of disbonding crack may be achieved through dispersening fine carbides in the gain boundary.

  • PDF

Analysis of Thermal Shock and Thermal Fatigue in Tool Steels for Hot Forging (열간단조 금형강의 열충격과 열피로 특성연구)

  • 김정운;문영훈;류재화;박형호
    • Transactions of Materials Processing
    • /
    • v.11 no.1
    • /
    • pp.61-68
    • /
    • 2002
  • The thermal shock and thermal fatigue test has been carried out to analyze the thermal characteristics of tool steels for hot forging and the effects of mechanical properties on this study have been investigated. The resistance to thermal shock is first of all a matter of good toughness and ductility. Therefore, a proper hot-work tool steel should be characterized by high fracture strength and high temperature toughness. Based on these results, some critical temperature($T_{fracture}$) at which fracture occur can be measured to characterize the thermal resistance of the materials. During thermal fatigue tests, the thermal fatigue cracks occur because of the repetitive heating and cooling of the die surface and the thermal fatigue damage was evaluated by analyzing different number of cycles to failure. The results showed that the resistance to thermal shock and thermal fatigue were found to be favoured by high hot tensile strength and high hot hardness, and thermal resistance of SKD61 was superior to that of ESC, SKT4 and this was caused by higher mechanical properties of SKD61.

A Basic Study on the Development of Domestic Underwater Wet Arc Welding Electrode (습식 수중 아크용접봉의 국산화개발에 관한 기초연구)

  • 김민남;김복인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.1122-1129
    • /
    • 2001
  • Underwater wet arc welding process was experimentally investigated by using the six types of flux coated electrodes of 3.2 mm diameter and the KR-RA steel plate of 11 mm thickness as base metal. Two types of electrodes were domestic covered arc welding electrode(CR13, CR14) and another two types of wet welding electrodes(UWCS, TN20)were imported goods, and the other two type (UWX1, UWX2) were individually designed flux coated electrodes for experimental welding purpose. Main experimental results are summerized as follows: 1. It is ascertained that individually designed flux coated electrode(UWX1) could be used in practice with KR-RA steel plate for underwater wet arc bead welds. 2. Welding arc can be generated easily and considerably kept in stable using TN20 and UWX1 electrodes. 3. The micro Vickers hardness value and the portion of martensite in the HAZ were increased in all the electrodes by rapid cooling rate, but it is relatively maintain stable for UWCS, TN20 and UWX1 electrodes.

  • PDF

HIGH SPEED VARIABLE SQUARE WAVE AC SUBMERGED ARC WELDING -FREQUENCY/BALANCE STUDY .250″ PLAIN CARBON STEEL

  • Reynolds, Jon-O;Sean P. Moran
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.361-365
    • /
    • 2002
  • Advancements in silicon phase control (SCR) technologies provide an arc welding power supply that has the capability to allow the alteration of the Alternating Current (AC) welding output. These technologies provide a square wave output involving sixteen frequency selections and multiple balance selections. While an AC out put is known to minimize magnetic disturbances associate with Direct Current (DC), the potentials of a non-sinusoidal waveform have not been explored. The focus of the paper is to determine the effects that the frequency and balance of an AC wave form output will have upon a high speed Submerge Arc (SAW) application. The test matrix of the project includes welding .250" steel plate. Joint type is square groove with a travel speed of 65 IPM. Each of the weld parameters was held constant, only the frequency and/or balance were altered between welds. Each frequency/balance combination involved three-gap spacing. Upon completion of the welds the bead profiles were measured and recorded. A relationships/trends were observed with various frequency and balance values. Optimum frequency and balance values were found for the .250" square groove application which permit consistent weld sizing, ease of slag removal, and minimal plate distortion.

  • PDF

The Direct Recycling of Electric Arc Furnace Stainless Steelmaking Dust

  • Zhang, Chuanfu;Peng, Bing;Peng, Ji;Lobel, Jonathan;Kozinski, Janusz A.
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.404-408
    • /
    • 2001
  • This paper focuses on the pilot-scale investigation of direct recycling of electric arc furnace (EAF) stainless steelmaking dust. The direct recycling of EAF dust is to make pellets with the mixture of the dust and the reducing agent carbon, then introduce the pellets to the EAF. The valuable metals in the dust are reduced and get into the steel as the alloying elements. Experiments simulating direct recycling in an EAF were performed using an induction furnace. But it seems difficult to reduce all metal oxides in the dust so that some metal reducing agents added in the late stage of reduction process. The valuable metals in the dust were reduced partly by carbon and partly by metal reducing agent for the economical concern. The recovery of iron, chromium and nickel from the flue dust and the amount of metal oxides in the slag were measured. The results showed that the direct recycling of EAF stainless steelmaking dust is practicable. It wes also found that direct recycling of flue EAF stainless steelmaking dusts does not affect the chemistry and quality of stainless steel produced in the EAF. It is benefit not only for the environmental protection but also for the recovery of valuable metal resources in this way.

  • PDF

The Study about Characteristics of Welding Consumable and Weld Metal for EGW (EGW 용접재료 및 용접부 특성에 관한 연구)

  • Lee, Jeong-Soo;Yun, Jin-Oh;Jeong, Sang-Hoon;Park, Chul-Gyu;An, Young-Ho
    • Journal of Welding and Joining
    • /
    • v.28 no.2
    • /
    • pp.79-83
    • /
    • 2010
  • In this study, newly developed welding consumables for EGW were welded in EH 36 TM steel plates and their welded joints were evaluated in point of mechanical properties and microstructures compared with imported consumables. Newly developed welding consumables were evaluated as good arc stability and slag fluidity, substantially the same with imported products. The tensile strength of all welded joints were sufficient to meet the requirements specified in a ship’s classification(490~640MPa) and all areas of fracture were heat affected zone(HAZ). Charpy absorbed energy values of all EG welded metals were sufficient to meet the requirements of classification(min. 34J) and those of newly developed wires were evaluated to be better than those of imported wires. As a result observing microstructures of single and tandem EG welded metals through optical and scanning electron microscope (OM&SEM), no grain boundary ferrite(PF(G)) were created in a prior austenite grain boundary and a volume fraction of a fine acicular ferrite were observed very high.

Metallugical Study on the Iron Artifaets Ecavated from Buso Sangong (부소산성 출토 고대 철기유물에 대한 금속학적 연구)

  • Im, Seon-Gi;Gang, Dae-Il;Mun, Hwan-Seok;Park, Dong-Gyu;Gang, Seong-Gun
    • 보존과학연구
    • /
    • s.13
    • /
    • pp.37-58
    • /
    • 1992
  • Iron artifacts from Busǒ Sansǒng inffered to late Baikjae periodwere studied on the aspects of metallugy. These materials were the largest size ever since excavated. From the analytical results these artifacts were found to be pureiron system without impurities or hypo-eutectoid steel system in below 0.3% in carbon contents. From the content of phosphorus in the range of 0.03∼0.05% as aim purity it was shown that charcoal were used for making these iron artifacts from sponge iron not fusion method. By observing metallugical structure it was found that iron artifacts was manufactured by repetitive folding and hammering forging method and some by heating method for adding carbon with cool water. This method were to improve the quality of the soften steel to harden one. In addition to those above repetitive hammering method eliminated the nonferrous materials such as slag inclusion and remained relatively pure ferrite.

  • PDF

Prediction of compressive strength of GGBS based concrete using RVM

  • Prasanna, P.K.;Ramachandra Murthy, A.;Srinivasu, K.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.6
    • /
    • pp.691-700
    • /
    • 2018
  • Ground granulated blast furnace slag (GGBS) is a by product obtained from iron and steel industries, useful in the design and development of high quality cement paste/mortar and concrete. This paper investigates the applicability of relevance vector machine (RVM) based regression model to predict the compressive strength of various GGBS based concrete mixes. Compressive strength data for various GGBS based concrete mixes has been obtained by considering the effect of water binder ratio and steel fibres. RVM is a machine learning technique which employs Bayesian inference to obtain parsimonious solutions for regression and classification. The RVM is an extension of support vector machine which couples probabilistic classification and regression. RVM is established based on a Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. Compressive strength model has been developed by using MATLAB software for training and prediction. About 70% of the data has been used for development of RVM model and 30% of the data is used for validation. The predicted compressive strength for GGBS based concrete mixes is found to be in very good agreement with those of the corresponding experimental observations.

Effect of medium coarse aggregate on fracture properties of ultra high strength concrete

  • Karthick, B.;Muthuraj, M.P.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.103-114
    • /
    • 2021
  • Ultra high strength concrete (UHSC) originally proposed by Richards and Cheyrezy (1995) composed of cement, silica fume, quartz sand, quartz powder, steel fibers, superplasticizer etc. Later, other ingredients such as fly ash, GGBS, metakaoline, copper slag, fine aggregate of different sizes have been added to original UHSC. In the present investigation, the combined effect of coarse aggregate (6mm - 10mm) and steel fibers (0.50%, 1.0% and 1.5%) has been studied on UHSC mixes to evaluate mechanical and fracture properties. Compressive strength, split tensile strength and modulus of elasticity were determined for the three UHSC mixes. Size dependent fracture energy was evaluated by using RILEM work of fracture and size independent fracture energy was evaluated by using (i) RILEM work of fracture with tail correction to load - deflection plot (ii) boundary effect method. The constitutive relationship between the residual stress carrying capacity (σ) and the corresponding crack opening (w) has been constructed in an inverse manner based on the concept of a non-linear hinge from the load-crack mouth opening plots of notched three-point bend beams. It was found that (i) the size independent fracture energy obtained by using above two approaches yielded similar value and (ii) tensile stress increases with the increase of % of fibers. These two fracture properties will be very much useful for the analysis of cracked concrete structural components.