• Title/Summary/Keyword: Steel Reinforcement Bar

Search Result 231, Processing Time 0.025 seconds

A Study on the Failure Behavior of Carbon Fiber Sheet Reinforced Mortar Using Acoustic Emission Technique (AE를 이용한 탄소섬유시트 강화 모르타르의 파괴거동에 관한 연구)

  • 이진경;이준현;장일영
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.3
    • /
    • pp.67-75
    • /
    • 2000
  • It was well recognized that the damages associated mainly with the aging of civil infrastructures were one of very serious problems for assurance of safety and reliability. Recently carbon fiber sheet(CFS) has been widely used for reinforcement and rehabilitation of damaged concrete beam. However, the fundamental mechanism of load transfer and its load-resistant for carbon fiber sheet reinforced concrete are not fully understood. In this study, three point bending test has been carried out to understand the damage progress and the micro-failure mechanism of CFS reinforced mortars. For this purpose, four different types of specimens are used, that is, mortar, steel bar reinforced mortar, CFS reinforced mortar, and steel bar and CFS reinforced morter. Acoustic Emission(AE) technique was used to evaluate the characteristics of damage progress and the failure mechanism of specimens. in addition, two-dimensional AE source location was also performed to monitor crack initiation and propagation processes for these specimens.

A Study on the Manufacturing of Hybrid Fiber Reinforced Plastic Rebar Using In-Line Braiding and Pultrusion (라인 브레이딩 펄트루젼을 이용한 하이브리드 섬유강화 복합재료 리바 제작에 관한 연구)

  • 신용욱;한길영;이동기;심재기;오환교
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.57-62
    • /
    • 2000
  • This paper describes the need for a ductile Fiber Reinforced Plastic(FRP) reinforcement for concrete structures. Using the material hybrid and geometric hybrid. it is demonstrated that the pseudo-ductility characteristic can be generated in FRP rebar. Ductile hybrid FRP bars were successfully fabricated at 4mm and 10mm nominal diameters using an hand lay up method. Tensile specimens from these bars were tested and compared with behavior of FRP rebar and steel bar

  • PDF

Performance Evaluation Test of the flexural members of High-Strength Reinforcing Bars for Nuclear Power Plant Structure (원전 구조물의 고강도 철근 설계기준 적용을 위한 휨부재 평가 실험)

  • Lim, Sang-Joon;Kim, Seok-Chul;Lee, Han-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.203-204
    • /
    • 2012
  • One of the advantages using High-Strength steel reinforcement in construction is the economic effect due to the decreasing of its quantity. Also, another good effect is the increases of workability by reason of reducing the congestion. This study explain plan of experiment after analysing of ACI 318, 349, 359 to develop 550MPa re-bar design criteria applicable to flexural members of nuclear power plants.

  • PDF

Modified model of ultimate concrete compression strain (콘크리트의 극한변형률 수정모델)

  • Ko, Seong-Hyun;Lee, Jae-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.81-84
    • /
    • 2008
  • The purposes of this study are to verify a reasonable model of material characteristic and to propose a rational model of reinforcement characteristic considering monotonic and cyclic loading about manufactured reinforcing steel in Korea. Longitudinal reinforcements of the plastic hinge region were behaved tensile deformation and compressional deformation by direction of lateral loading. However Confinement steels were behaved only tensile deformation by lateral loading. Transverse steels were laid the state of tension in the lateral loading of time, and they were laid state that stress is zero when it was removed lateral load. The tests for cyclic tension loading were performed for test variable as yield strength and reinforcement bar sizes. It was estimated that the total strain energy per unit volume was 74 $MJ/m^3$. The modified ultimate concrete compression strain model was proposed based on experimental study of cyclic tension test for manufactured reinforcing steel in Korea.

  • PDF

A Fundamental Study on Section Design of Polymer Concrete Thin Panel (얇은 폴리머 콘크리트 패널의 단면 결정을 위한 기초연구)

  • Yeon, Kyu-Seok;Ryu, Neung-Hwan;Choi, Dong-Soon;Kim, Ki-Rak;Jin, Nan-Ji
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.243-248
    • /
    • 1998
  • This study was initiated to develop a precast polymer concrete production method and to describe an criterion for the optimum thickness of precast polymer concrete by a series of experiment and structural analysis. Nine specimens with different thickness and steel bar reinforcement were prepared and tested and analyzed with respect to structural behaviors. Cracking moment was mostly affected by the thickness but steel reinforcement seemed not to have effect on the moment. Data of the study could be widely applied in designing and planning of production processes of many polymer concrete products of which all or some of components are composed with thin panels.

  • PDF

Bond slip modelling and its effect on numerical analysis of blast-induced responses of RC columns

  • Shi, Yanchao;Li, Zhong-Xian;Hao, Hong
    • Structural Engineering and Mechanics
    • /
    • v.32 no.2
    • /
    • pp.251-267
    • /
    • 2009
  • Reinforced concrete (RC) structures consist of two different materials: concrete and steel bar. The stress transfer behaviour between the two materials through bond plays an important role in the load-carrying capacity of RC structures, especially when they subject to lateral load such as blast and seismic load. Therefore, bond and slip between concrete and reinforcement bar will affect the response of RC structures under such loads. However, in most numerical analyses of blast-induced structural responses, the perfect bond between concrete and steel bar is often assumed. The main reason is that it is very difficult to model bond slip in the commercial finite element software, especially in hydrodynamic codes. In the present study, a one-dimensional slide line contact model in LS-DYNA for modeling sliding of rebar along a string of concrete nodes is creatively used to model the bond slip between concrete and steel bars in RC structures. In order to model the bond slip accurately, a new approach to define the parameters of the one-dimensional slide line model from common pullout test data is proposed. Reliability and accuracy of the proposed approach and the one-dimensional slide line in modelling the bond slip between concrete and steel bar are demonstrated through comparison of numerical results and experimental data. A case study is then carried out to investigate the bond slip effect on numerical analysis of blast-induced responses of a RC column. Parametric studies are also conducted to investigate the effect of bond shear modulus, maximum elastic slip strain, and damage curve exponential coefficient on blast-induced response of RC columns. Finally, recommendations are given for modelling the bond slip in numerical analysis of blast-induced responses of RC columns.

Experimental and analytical study on RC beam reinforced with SFCB of different fiber volume ratios under flexural loading

  • Lin, Jia-Xiang;Cai, Yong-Jian;Yang, Ze-Ming;Xiao, Shu-Hua;Chen, Zhan-Biao;Li, Li-Juan;Guo, Yong-Chang;Wei, Fei-Fei
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.133-145
    • /
    • 2022
  • Steel fiber composite bar (SFCB) is a novel type of reinforcement, which has good ductility and durability performance. Due to the unique pseudo strain hardening tensile behavior of SFCB, different flexural behavior is expected of SFCB reinforced concrete (SFCB-RC) beams from traditional steel bar reinforced concrete (S-RC) beams and FRP bar reinforced concrete (F-RC) beams. To investigate the flexural behavior of SFCB-RC beam, four points bending tests were carried out and different flexural behaviors between S/F/SFCB-RC beams were discussed. An flexural analytical model of SFCB-RC beams is proposed and proved by the current and existing experimental results. Based on the proposed model, the influence of the fiber volume ratio R of the SFCB on the flexural behavior of SFCB-RC beams is discussed. The results show that the proposed model is effective for all S/F/SFCB-RC flexural members. Fiber volume ratio R is a key parameter affecting the flexural behavior of SFCB-RC. By controlling the fiber volume ratio of SFCB reinforcements, the flexural behavior of the SFCB-RC flexural members such as bearing capacity, bending stiffness, ductility and repairability of SFCB-RC structures can be designed.

The developing direction of korean gas pressure welding machine (철근 가스압접공법 활성화를 위한 한국형 철근자동가스압접기 기술개발방향)

  • Seo, Deok-Seok;Song, Ki-Jun;Hwang, Kee-Tae;You, Beong-Taek
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.3 s.17
    • /
    • pp.131-138
    • /
    • 2005
  • The study is focused on the settling the developing direction of korean gas pressure welding machine which can be applied in korean construction sites with moderate and high performance. Gas pressure welding is more economical and has good performances than other steel bar jointing methods, as arc welding and mechanical joint etc. Therefore in Japan, the gas pressure welding, which has less loss of steel bars and low performance of joints, when connecting the D29 and thicker steel bars, Is one of the typical connection of steel reinforcement. But in Korea, the gas pressure welding method is not widely used caused by the shortage of skilled workers, and this situation in Korea can not be solved in short period. The training of the skilled workers takes long period(around $6\~10$ years), and there is no certification system for gas pressure welding. So to activate the gas pressure welding in Korea, the development of the automatic gas pressure welding machine is necessary, which gives regular performance of the steel bar joints and can be operated by not sufficient skilled workers. The automatic gas pressure welding machine was developed in Japan, but this machine has many problems when applied in korean construction sites. Therefore, it is necessary to develop a korean automatic gas pressure welding machine to overcome this problems. To develop korean automatic gas pressure welding machine, the problems, which shows when applied in korean construction sites, need to be investigated. According to the investigation, counterproposals are presented for the pragmatical development of the korean automatic gas pressure welding machine.

Development of Removable Soil Nail (제거식 쏘일 네일 개발 및 성능 평가)

  • Kim, Nak-Kyung;Kim, Sung-Kyu;Kim, Ung-Jin;Kim, Woong-Kyu;Cho, Kyu-Wan;Sin, Sang-Hoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.896-901
    • /
    • 2009
  • A Soil Nail is a structural element which provides load-transfer to the ground in excavation reinforcement applications. The nail may simply consist of a steel tendon, but most commonly the tendon is encapsulated in a cement grouted body to provide corrosion protection and improved load- transfer to the ground. For temporary excavation support in a congested urban area, the steel bar of Soil Nails should be removed to get permission of the private land to install Soil Nails. Several removable nail systems were developed and evaluated by pull-out load tests. The Soil Nail pull-out tests were performed on five nails installed in soft and hard rock at a 00 housing-redevelopment area in seoul. Two nails are plastic socket type and two are complex socket type mixed steel and plastic. The nail was 0.1mm in diameter, 4m long. In this study verification tests, and steel bar removing tests of plastic socket type nails and complex socket type nails were performed and presented.

  • PDF

Earthquake resistance of structural walls confined by conventional tie hoops and steel fiber reinforced concrete

  • Eom, Taesung;Kang, Sumin;Kim, Okkyue
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.843-859
    • /
    • 2014
  • In the present study, the seismic performance of structural walls with boundary elements confined by conventional tie hoops and steel fiber concrete (SFC) was investigated. Cyclic lateral loading tests on four wall specimens under constant axial load were performed. The primary test parameters considered were the spacing of boundary element transverse reinforcement and the use of steel fiber concrete. Test results showed that the wall specimen with boundary elements complying with ACI 318-11 21.9.6 failed at a high drift ratio of 4.5% due to concrete crushing and re-bar buckling. For the specimens where SFC was selectively used in the plastic hinge region, the spalling and crushing of concrete were substantially alleviated. However, sliding shear failure occurred at the interface of SFC and plain concrete at a moderate drift ratio of 3.0% as tensile plastic strains of longitudinal bars were accumulated during cyclic loading. The behaviors of wall specimens were examined through nonlinear section analysis adopting the stress-strain relationships of confined concrete and SFC.