• Title/Summary/Keyword: Steel Product

Search Result 564, Processing Time 0.027 seconds

CALS oriented design/fabrication information system for steel bridges

  • Isohata, Hiroshi;Fukuda, Masahiko;Watanabe, Sueo
    • Steel and Composite Structures
    • /
    • v.3 no.1
    • /
    • pp.13-32
    • /
    • 2003
  • In this paper design and fabrication information system for steel bridge construction is studied and proposed according to the progress of Construction CALS/EC in the construction industry in Japan. The data exchange in this system bases on the text file as well as CAD data with simplified drawings. The concept of this system is discussed following the analysis on the issues of the conventional system. The application of the product model is also discussed including effects and issues on the inspection system. This paper is based on the study carried out by Special Committee on Construction CALS of JASBC to which author belong.

A Study on Product Quality Improvement by Regression Modeling of Mini-Mill Process (미니밀 공정의 회귀식 모델링에 의한 제품품질향상에 관한 연구)

  • Lee, Myung-Hak;Ha, Sung-Do
    • IE interfaces
    • /
    • v.12 no.1
    • /
    • pp.150-157
    • /
    • 1999
  • Mini-Mill process has been recently in operation at Pohang steel company, which enables more flexible steel coil production on customer demands. The effects of process parameters in Mini-Mill process need to be analyzed not only to make the process stable but also to improve product quality. This work aims to develop a regression model of Mini-Mill process using accumulated product data such that the process parameter effects on product tensile strength may be analyzed. The analysis shows that tensile strength is influenced mainly by the amount of components such as carbon, manganese, silicon, and sulfur. The effect of temperature is shown to be small. It is concluded that control of the components is much more responsible for both meeting the target and reducing the variation of the product tensile strength. Heat treatment is more useful in compensating tensile strength variations due to thickness differences and improving workability and other quality characteristics. More work is necessary for establishing regression expressions of the process that is reliable and accurate enough to dispense with the off-line inspection of the product tensile strength.

  • PDF

Explosion Resistance Performance of Corrugated Blast Walls for Offshore Structures made of High Energy Absorbing Materials (고에너지흡수 신소재 적용 해양플랜트 파형 방폭벽의 폭발 저항 성능)

  • Noh, Myung-Hyun;Park, Kyu-Sik;Lee, Jae-Yik
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.38-44
    • /
    • 2015
  • In this paper, a finite element dynamic simulation study was performed to gain an insight about the blast wall test details for the offshore structures. The simulation was verified using qualitative and quantitative comparisons for different materials. Based on in-depth examination of blast simulation recordings, dynamic behaviors occurred in the blast wall against the explosion are determined. Subsequent simulation results present that the blast wall made of high energy absorbing high manganese steel performs much better in the shock absorption. In this paper, the existing finite element shock analysis using the LS-DYNA program is further extended to study the blast wave response of the corrugated blast wall made of the high manganese steel considering strain rate effects. The numerical results for various parameters are verified by comparing different material models with dynamic effects occurred in the blast wall from the explosive simulation.

Galvanic Corrosion Behavior between Carbon Steel Bolted GECM(Graphite Epoxy Composite Material)/Al plates (탄소강 볼트 체결된 GECM(Graphite Epoxy Composite Material)/Al 판재 간의 갈바닉 부식 거동)

  • Kim, Youngsik;Park, Sujin;Yoo, Youngran
    • Corrosion Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.12-26
    • /
    • 2013
  • This work focused on galvanic corrosion of carbon steel bolted GECM/Al plates by long-term test in tap water and NaCl solutions. Test product was carbon steel bolted between cross packed GECM and painted aluminium. Tests for the product and coupled parts determined corrosion rate in tap water and NaCl solutions. Also, using a potentiostat and salt water sprayer, galvanic test was done. In galvanic test on carbon steel bolted GECM/Al plates, corrosion of carbon steel bolt was faster in series of tap water>1% NaCl solution>3.5% NaCl solution. In galvanic couple between aluminium and carbon steel bolt, their corrosion rates were higher than those of single specimen. In galvanic couple between GECM, aluminium, and carbon steel bolt, corrosion behaviors of carbon steel bolt and aluminium were changed due to different corrosion mechanism in tap water and chloride solution.

Numerical analysis of concrete degradation due to chloride-induced steel corrosion

  • Ayinde, Olawale O.;Zuo, Xiao-Bao;Yin, Guang-Ji
    • Advances in concrete construction
    • /
    • v.7 no.4
    • /
    • pp.203-210
    • /
    • 2019
  • Concrete structures in marine environment are susceptible to chloride attack, where chloride diffusion results in the corrosion of steel bar and further lead to the cracking of concrete cover. This process causes structural deterioration and affects the response of concrete structures to different forms of loading. This paper presents the use of ABAQUS Finite Element Software in simulating the processes involved in concrete's structural degradation from chloride diffusion to steel corrosion and concrete cover cracking. Fick's law was used for the chloride diffusion, while the mass loss from steel corrosion was obtained using Faraday's law. Pressure generated by steel corrosion product at the concrete-steel interface was modeled by applying uniform radial displacements, while concrete smeared cracking alongside the Extended Finite Element Method (XFEM) was used for concrete cover cracking simulation. Results show that, chloride concentration decreases with penetration depth, but increases with exposure time at the concrete-steel interface. Cracks initiate and propagate in the concrete cover as pressure caused by the steel corrosion product increases. Furthermore, the crack width increases with the exposure time on the surface of the concrete.

Atmospheric Corrosion Behavior of Carbon Steel by the Outdoor Exposure Test for 10 Years in Korea

  • Yoo, Y.R.;Choi, S.H.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.184-199
    • /
    • 2022
  • Steel was exposed in an atmospheric environment, and atmospheric environmental factors that include chloride, humidity, SO2, NO2 etc. induced the corrosion of steel. Corrosivity categories classified by SO2 and chloride deposition rate were low, but those classified by TOW were high in the Korean Peninsula, and on these environmental categories, the corrosivity of atmospheres classified by corrosion rate in carbon steel was low medium, C2-C3, and medium, C3 for zinc, copper, and aluminum. This work performed the outdoor exposure test for 10 years at 14 areas in Korea and calculated the atmospheric corrosion rate of carbon steel. The atmospheric corrosion behavior of carbon steel is discussed based on the various corrosion factors. When the corrosion product forms on carbon steel by atmospheric corrosion, cracks may also be formed, and through these cracks, the environmental factors can penetrate into the interior of the product, detach some of the corrosion products and finally corrode locally. Thus, the maximum corrosion rate was about 7.3 times greater than the average corrosion rate. The color difference and glossiness of carbon steel by the 10 year-outdoor exposure tests are discussed based on the corrosion rate and the environmental factors.

Characterization of Product Surface according to Tool Surface Conditions when Forming TRIP1180 Steel Sheets with PVD CrN-coated Tools (PVD CrN 코팅 금형의 TRIP1180 판재 성형 시 금형의 표면상태에 따른 제품 표면특성 평가)

  • J. H. Bang;G. H. Bae;M. Kim;M. G. Lee;H. G. Kim;J. H. Song
    • Transactions of Materials Processing
    • /
    • v.32 no.5
    • /
    • pp.247-254
    • /
    • 2023
  • This study conducted the wear tests on bending punches coated with PVD CrN and examined the surface quality of the product formed by each punch in the forming of uncoated TRIP1180 sheets. The study quantitatively estimated the surface quality of the product by measuring the roughness and imaging the product surface. The correlation between the punch wear depth and the product surface roughness was quantitatively analyzed. The results showed that before failure occurs, the product roughness was comparable with that of the as-received, and the product surface was smooth without scratches and defects. However, after failure, the punch wear is caused by fretting wear mechanism, and a punch whose coating is not completely peeled plows the product surface, resulting in severe scratches with grooves and ridges on the product surface. Severe wear on the punch surface caused by fretting wear can rapidly degrade the product surface quality as it is directly affected by the punch surface condition, and the product surface quality accurately reflects the punch wear condition.

Preliminary Estimation of National Emission Inventory for the Unintentionally Produced Polychlorinated Biphenyls (국내 부산물 다염화비페닐(PCBs) 배출량 예비 평가)

  • Kim Kyoung-Mi;Cho Kyu-Tak;Lee Jee-Yoon;Lee Jee-Eun;Lee Dong-Soo
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.2
    • /
    • pp.227-233
    • /
    • 2004
  • The main objectives of this study were to identify from literature review the potential sources and to provide a preliminary national emission inventory for the unintentionally produced polychlorinated biphenyls (PCBs) (i.e., by - product PCBs). In Korea, fuel combustion, waste combustion, thermal industrial processes, and transportation were identified as potential sources of by -product PCB s. According to the availability of the emission factors and/or activity data, emission inventory could be assessed only for fuel combustion, waste combustion, steel industry, non-ferrous industry, and non-metallurgical industry. The total national emission of by-product PCBs was estimated to be 1087kg for the year 2000. The preliminary estimation further indicated that the steel manufacturing was the single dominant emission category, contributing 93% to the total emission. Of the steel manufacturing processes, the contribution of the electric arc furnace was about 80% of the total emission. Due to high uncertainty associated with both the emission factors and activity statistics, the emission estimates in this study are likely to contain significant errors. However, the results of the present work could serve the first step toward future efforts to establish national source and emission inventories of by-product PCBs.

Database of Steel Sheet for Automotive body (자동차용 강판의 물성 데이터베이스)

  • 박현철;이상곤;신철수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1483-1486
    • /
    • 2004
  • Purpose of this paper is to accummulate database of automotive steel sheet from mild steel to high strength steel in cold rolled steel sheets. Physical properties, mainly mechanical properties, of steel sheet are tested and all data are arranged to one sheet. Methods of test are composed of FLD, tensile strength test, chemical composition, surface roughness and product conditions. Finally this database will be helpful to automotive body designers and die designers to design automotive body parts and tools in a material point of view.

  • PDF

The Corrosion Control Using CCPP(Calcium Carbonate Precipitation Potential )Index in Metallic Coupons ($CaCO_3$침전능 조절에 의한 금속시편에서의 부식방지)

  • 이재인;임진경;서상훈;김동윤;신춘환
    • Journal of Environmental Science International
    • /
    • v.9 no.6
    • /
    • pp.505-509
    • /
    • 2000
  • The purpose of this study was to evaluate the effects of $Ca(OH)_2$ and $CO_2$ additions on the corrosion of metal coupons(ductile iron, galvanized steel, copper and stainless steel). Corrosion rate and released metal ion concentration of ductile iron and galvanized steel decreased by adjusting alkalinity, calcium hardness and pH with $Ca(OH)_2$ & $CO_2$ additions on copper and stainless steel were less than those on ductile iron and galvanized steel. When ductile iron coupon was exposed to water treated with Ca(OH)$_2$&$CO_2$, additions, the main components of corrosion product formed on its surface were $CaCO_3$ and $Fe_2 O_3 or Fe_2 O_4$ which often reduce the corrosion rate by prohibiting oxygen transport to the metal surface.

  • PDF