• 제목/요약/키워드: Steel Plates

검색결과 1,471건 처리시간 0.023초

수직 Slit형(形) 강판으로 전단보강된 철근콘트리트 보의 전단보강효과 (Shear Strengthening Effect on Reinforced Concrete Beams Strengthened by Vertical Slit Type Steel Plates)

  • 이춘호;권기혁
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제13권1호통권53호
    • /
    • pp.195-204
    • /
    • 2009
  • 강판부착공법은 철근콘크리트(RC) 보의 전단내력이 부족한 경우에 일반적으로 사용되는 보강공법 중의 하나이다. 그러나, 기존의 solid형 강판보강공법은 강성이 우수한 반면 취성적 부착파괴, 비효율적인 재료량 및 시공성 등의 문제가 알려져 있으며, 띠형 강판보강공법은 제한된 접착면적과 강판의 비일체적 거동 때문에 보강효과가 낮게 되는 단점이 있다. 따라서, 본 연구에서는 이러한 문제점을 개선할 수 있는 Slit형 강판을 사용하여 전단내력을 보강하는 방법을 제시하고 이 공법의 보강효과를 분석하고자 하였다. 전단경간 내에서 수직 Slit형 강판의 폭, 간격 및 두께를 주요 변수로 하는 13개의 시험체를 제작하였으며, 본 연구의 실험결과 및 기존 띠형 강판으로 전단보강된 RC 보의 실험결과를 비교 분석하고 Slit형 강판공법의 보강효과를 정량적으로 규명하였다. 실험결과, 기존의 개별적 띠형 전단보강방법에 비하여 일체화된 수직 Slit형 강판으로 보강한 경우에 더 높은 전단내력을 보였으며, 이는 강판과 RC 보의 일체성이 높아지고 강판의 부착면적이 증대되기 때문인 것으로 판단된다.

강판으로 보강된 철근콘크리트 기둥의 구조적 거동에 관한 실험적 연구 (An Experimental Study on the Structural Behavior of Reinforced Concrete Columns Rehabilitated with Epoxy-Bonded Steel Plates)

  • 김진배;원영술;조철호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제3권3호
    • /
    • pp.269-277
    • /
    • 1999
  • The purpose of this study is to investigate the structural behavior of reinforced concrete columns rehabilitated with epoxy-bonded steel plates subjected to axial load. Eleven specimens were made to evaluate structural capacity of reinforced concrete columns rehabilitated with steel plates. This study considers the change of the internal force and the deformation of reinforced concrete column with reinforcing steel plates, and analyzes the effect of the improvement of strength and ductility. Based on the test results, this study brings the following conclusions. In case of the effect of reinforcement by the ratio of the same volume, the internal force for the test model, which the width of the reinforcing steel plate is small, is effectively higher. The smaller the width and the thickness of reinforcing steel plate, the more effective the effect of reinforcement is. For applying the theorical equation by Uzumeri, the maximum load and the coefficient of effective crossing reinforcement by the width and the thickness of steel plate reflected the properties of reinforcing steel plate.

  • PDF

강판으로 보강된 RC보의 조기파괴제어에 관한 실헙적 연구 (A Experimental Study on the Control of Premature Failure of RC Beams strengthened by Steel Plates)

  • 심종성;한만엽;김규선;이인범
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.585-591
    • /
    • 1998
  • In the case of reinforced concrete beams strengthening by steel plate, sometimes these beams collapse due to the stress concentration at the ends of steel plates before the design expected failure. This kind of failure is called premature failure. This study analyzes the behavior of strengthened RC beams to control premature failure of these plated beams with either changing the geometries at the ends of plates or strengthening steel plates beside the ends. The results from the former cases show that, the effect of expanded plates sections at the ends was very small, and the beams which are rounded the ends of plates effectively increased the initial rip-off loads about 14% compared with control beam but the ultimate loads was almost same. However, the beams in the latter cases effectively increased the initial and the ultimate rip-off loads with changing failure mode, especially around 14~19% in the ultimate rip-off load comparing with control beam.

  • PDF

자기장에 의한 강판의 좌굴거동 (Buckling of Steel Plates in Magnetic Fields)

  • 이종세;젱샤오징
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.201-205
    • /
    • 1999
  • An analytical study on the stability of steel plates in the presence of magnetic fields is carried out based on a model which accounts for the nonlinear field-structure interaction. The resultant force system arising from the interaction between the magnetic fields and ferromagnetic plates is derived using the variational principle. The bending and buckling problems of steel plates in oblique magnetic fields are investigated with the aid of the finite element method. Numerical results reveal some interesting features of the magnetoelastic buckling phenomenon.

  • PDF

철판압착법에 의해 보강된 휨부재의 구조적 거동에 관한 실험 연구 (An Experimental Study on the Structural Behavior of the Repaired flexural members by Epoxy-Bonded Steel Plates)

  • 황규표;장성재;고훈범;임재형;음성우;문장수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.331-336
    • /
    • 1994
  • This paper presents comprehensive test data on the effect of Epoxy-Bonded Steel Plates on the ultimate strengths, ductilities, failure modes and structural deformations of flexural members strengthened with steel plates on the tension face. To achieve the purpose, six specimens with and without Epoxy-Bonded steel Plates were tested. The results show that Epoxy-Bonded Steel Plate is very effective for strengthening the damaged structure, That is, plated members have enhanced ultimate strength at all load levels until failure. However, the failure mode of plated members is brittle as soon as steel plate separates from concrete face.

  • PDF

고장력볼트로 체결되는 철판 사이의 미끄럼계수 (Slip Coefficients between Steel Plates Fixed with High Tension Bolts)

  • 김충현
    • Tribology and Lubricants
    • /
    • 제24권6호
    • /
    • pp.338-342
    • /
    • 2008
  • Tensile test results using three kinds of steel structure specimens are measured and compared. Slip coefficient between shot blasted steel plates was greater than 0.6. For the case of the plates coated with Super zinc, it revealed that the coefficients were greater than 0.5. On the other hand, Super epoxy coating decreased its slip coefficient less than 0.25. Steel plates coated with Super zinc are proved to be practically applicable to the steel structures with anti-corrosion characteristics and clean surfaces.

단부 보강에 따른 U-플랜지 트러스 보의 구조 내력에 관한 실험 연구 (Experimental Study on the Structural Capacity of the U-Flanged Truss Steel Beam With Reinforced End by Steel Plates)

  • 오명호;김영호
    • 한국공간구조학회논문집
    • /
    • 제20권2호
    • /
    • pp.31-38
    • /
    • 2020
  • U-flanged truss beam is composed of u-shaped upper steel flange, lower steel plate of 8mm or more thickness, and connecting lattice bars. Upper flange and lower plate are connected by the diagonal lattice bars welded on the upper and lower sides. In this study, the details of delayed buckling of lattice members were developed through reinforcement of the end section, in order to improve structural capacity of U-flanged Truss Steel Beam. To verify the effects of these details, the simple beam experiment was conducted. The maximum capacity of all the specimens were determined by the buckling of the lattice. The vertical reinforced details of the ends with steel plates, rather than the details reinforced with steel bars, are confirmed to be a valid method for enhancing the structural capacity of the U-flanged Truss beam. In addition, U-flanged Truss Steel Beam with reinforced endings with steel plates can exhibit sufficient capacity of the lattice buckling by the formulae according to Korean Building Code (KBC, 2016) and Eurocode 3.

Feasibility study on the wide and long 9%Ni steel plate for use in the LNG storage inner tank shell

  • Chung, Myungjin;Kim, Jongmin;Kim, Jin-Kook
    • Steel and Composite Structures
    • /
    • 제32권5호
    • /
    • pp.571-582
    • /
    • 2019
  • This study aimed to assess the feasibility on the wide and long 9%Ni steel plate for use in the LNG storage inner tank shell. First, 5-m-wide and 15-m-long 9%Ni steel plates were test manufactured from a steel mill and specimens taken from the plates were tested for strength, toughness, and flatness to verify their performance based on international standards and design specifications. Second, plates with a thickness of 10 mm and 25 mm, a width of 4.8~5.0 m, and a length of 15 m were test fabricated by subjecting to pretreatment, beveling, and roll bending resulting in a final width of 4.5~4.8 m and a length of 14.8m with fabrication errors identical to conventional plates. Third, welded specimens obtained via shield metal arc welding used for vertical welding of inner tank shell and submerged arc welding used for horizontal welding were also tested for strength, toughness and ductility. Fourth, verification of shell plate material and fabrication was followed by test erection using two 25-mm-thick, 4.5-m-wide and 14.8-m-long 9%Ni steel plates. No undesirable welding failure or deformation was found. Finally, parametric design using wide and long 9%Ni steel plates was carried out, and a simplified design method to determine the plate thickness along the shell height was proposed. The cost analysis based on the parametric design resulted in about 2% increase of steel weight; however, the construction cost was reduced about 6% due to large reduction in welding work.

선급용 고강도 극후물재의 취성파괴 정지 성능에 관한 연구 (Brittle Crack Arrestability of Thick Steel Plates for Shipbuilding)

  • 안규백;류강묵;박준식;정보영;김태수;이종섭
    • Journal of Welding and Joining
    • /
    • 제28권1호
    • /
    • pp.47-53
    • /
    • 2010
  • In recent time there is vigorous requirement for the use of thick steel plate in various industrial fields including shipbuilding industry. Especially, with the continual increases in marine transportation volumes on a global scale, the steel of container ships has become thicker and thicker with the increased size of ships. In addition, the brittle crack arrestability of heavy thick plates was big issue, in recently. In this study, crack arrest test were conducted in order to investigate the crack arrestability of thick plates for shipbuilding steels, where test plate thicknesses were 50mm and 80mm. This paper introduces the brittle crack arrestability of heavy thick plates with thickness effect for shipbuilding.

Axial strengthening of RC columns by direct fastening of steel plates

  • Shan, Z.W.;Su, R.K.L.
    • Structural Engineering and Mechanics
    • /
    • 제77권6호
    • /
    • pp.705-720
    • /
    • 2021
  • Reinforced concrete (RC) columns are the primary type of vertical support used in building structures that sustain vertical loads. However, their strength may be insufficient due to fire, earthquake or volatile environments. The load demand may be increased due to new functional usages of the structure. The deformability of concrete columns can be greatly reduced under high axial load conditions. In response, a novel steel encasement that distinguishes from the traditional steel jacketing that is assembled by welding or bolt is developed. This novel strengthening method features easy installation and quick strengthening because direct fastening is used to connect the four steel plates surrounding the column. This new connection method is usually used to quickly and stably connect two steel components by driving high strength fastener into the steel components. The connections together with the steel plates behave like transverse reinforcement, which can provide passive confinement to the concrete. The confined column along with the steel plates resist the axial load. By this way, the axial load capacity and deformability of the column can be enhanced. Eight columns are tested to examine the reliability and effectiveness of the proposed method. The effects of the vertical spacing between adjacent connections, thickness of the steel plate and number of fasteners in each connection are studied to identify the critical parameters which affect the load bearing performance and deformation behavior. Lastly, a theoretical model is proposed for predicting the axial load capacity of the strengthened RC columns.