• Title/Summary/Keyword: Steel Plant Engineering

Search Result 325, Processing Time 0.028 seconds

Degradation of Carbon Steel Tube after Long Time Exposure at Petrochemical Plant (석유화확 Plant에서 장시간 사용된 튜브형태 탄소강의 열화현상)

  • Baik, Nam Ik
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.1
    • /
    • pp.16-20
    • /
    • 2000
  • There have been little reports on the degradation of medium-carbon steel tubes served at high temperature for a long period. The purpose of this research was to provide the information of the proper replacement span of the tubes with the new ones. We investigated the medium-carbon steel tubes which were used at petrochemical plant for about 50,000 hrs to examine their mechanical properties and microstructures. Experimental results showed that the tubes satisfied the specification of ASTM despite such a long period of service, but mechanical properties, especially charpy impact values, were reduced. It concludes that the tubes on service at the plants needs a periodical inspection.

  • PDF

Compressive Behavior of Steel Plate-Concrete Structures using Eco-Oriented Cement Concrete (친환경시멘트 콘크리트를 사용한 강판콘크리트구조의 압축거동)

  • Kang, Cheol-Kyu;Choi, Byong-Jeong;Jeoung, Beak-Seon
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.5
    • /
    • pp.583-593
    • /
    • 2012
  • The domestic research of the steel plate concrete structures have been focused on the nuclear structures requiring much strong resistance. There are many advantages in the steel plate-concrete structures such as the possibility of prefabricated production and modular construction. This research tried to establish some basic design information of SC structures toward mid to low-rise general buildings with low strength. To reduce the strength mentioned, the some of the cement in weight was replaced by the soils which are traditional and environmental oriented material where the new system can be used to general buildings. This paper studied on the compressive characteristics, effective length factors, buckling loading, steel plate buckling, and stud strength using the compression member subjected to the concentrated compression loadings.

SHAKING TABLE TEST OF STEEL FRAME STRUCTURES SUBJECTED TO SCENARIO EARTHQUAKES

  • CHOI IN-KlL;KIM MIN KYU;CHOUN YOUNG-SUN;SEO JEONG-MOON
    • Nuclear Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.191-200
    • /
    • 2005
  • Shaking table tests of the seismic behavior of a steel frame structure model were performed. The purpose of these tests was to estimate the effects of a near-fault ground motion and a scenario earthquake based on a probabilistic seismic hazard analysis for nuclear power plant structures. Three representative kinds of earthquake ground motions were used for the input motions: the design earthquake ground motion for the Korean nuclear power plants, the scenario earthquakes for Korean nuclear power plant sites, and the near-fault earthquake record from the Chi-Chi earthquake. The probability-based scenario earthquakes were developed for the Korean nuclear power plant sites using the PSHA data. A 4-story steel frame structure was fabricated to perform the tests. Test results showed that the high frequency ground motions of the scenario earthquake did not damage the structure at the nuclear power plant site; however, the ground motions had a serious effect on the equipment installed on the high floors of the building. This shows that the design earthquake is not conservative enough to demonstrate the actual danger to safety related nuclear power plant equipment.

Effect of thermal aging on the mechanical, intergranular corrosion and corrosion fatigue properties of Z3CN20.09M cast duplex stainless steel

  • Ti, Wenxin;Wu, Huanchun;Xue, Fei;Zhang, Guodong;Peng, Qunjia;Fang, Kewei;Wang, Xitao
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2591-2599
    • /
    • 2021
  • The effect of thermal aging at 475 ℃ and 750 ℃ of Z3CN20.09M cast duplex stainless steel (CDSS) on microstructure, mechanical and intergranular corrosion properties were investigated by transmission electron microscope (TEM), nano indenter, scanning electron microscope (SEM) and corrosion fatigue test system. The result indicated that the spinodal decomposition and G precipitated were occurred after aged at 475 ℃, as well as sigma precipitated at 750 ℃. The microstructure degeneration of ferrite was saturated after aged for 2000h and 200 h at 475 ℃ and 750 ℃ respectively. The mechanical properties, intergranular corrosion resistance and corrosion fatigue lives were continuing deteriorated with increasing the aging time at both temperatures. The difference of the degeneration mechanisms of Z3CN20.09M CDSS aged at 475 ℃ and 750 ℃ was analyzed.

Morphologies of Brazed NiO-YSZ/316 Stainless Steel Using B-Ni2 Brazing Filler Alloy in a Solid Oxide Fuel Cell System

  • Lee, Sung-Kyu;Kang, Kyoung-Hoon;Hong, Hyun-Seon;Woo, Sang-Kook
    • Journal of Powder Materials
    • /
    • v.18 no.5
    • /
    • pp.430-436
    • /
    • 2011
  • Joining of NiO-YSZ to 316 stainless steel was carried out with B-Ni2 brazing alloy (3 wt% Fe, 4.5 wt% Si, 3.2 wt% B, 7 wt% Cr, Ni-balance, m.p. 971-$999^{\circ}C$) to seal the NiO-YSZ anode/316 stainless steel interconnect structure in a SOFC. In the present research, interfacial (chemical) reactions during brazing at the NiO-YSZ/316 stainless steel interconnect were enhanced by the two processing methods, a) addition of an electroless nickel plate to NiO-YSZ as a coating or b) deposition of titanium layer onto NiO-YSZ by magnetron plasma sputtering method, with process variables and procedures optimized during the pre-processing. Brazing was performed in a cold-wall vacuum furnace at $1080^{\circ}C$. Post-brazing interfacial morphologies between NiO-YSZ and 316 stainless steel were examined by SEM and EDS methods. The results indicate that B-Ni2 brazing filler alloy was fused fully during brazing and continuous interfacial layer formation depended on the method of pre-coating NiO-YSZ. The inter-diffusion of elements was promoted by titanium-deposition: the diffusion reaction thickness of the interfacial area was reduced to less than 5 ${\mu}m$ compared to 100 ${\mu}m$ for electroless nickel-deposited NiO-YSZ cermet.

Alloying Effects of BCC-Fe Based Low-Alloy Steel on Mechanical and Thermal Expansion Properties for a Plant Engineering: Ab Initio Calculation (플랜트 엔지니어링을 위한 BCC-Fe 기반 저합금강의 기계적 및 열팽창 특성 합금 효과: Ab Initio 계산)

  • Myungjae Kim;Jongwook Kwak;Jiwoong Kim;Kyung-Nam Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.422-429
    • /
    • 2023
  • High-strength low-alloy steel is one of the widely used materials in onshore and offshore plant engineering. We investigated the alloying effect of solute atoms in α-Fe based alloy using ab initio calculations. Empirical equations were used to establish the effect of alloying on the Vicker's hardness, screw energy coefficient, and edge dislocation energy coefficient of the steel. Screw and edge energy coefficients were improved by the addition of V and Cr solute atoms. In addition, the addition of trace quantities of V, Cr, and Mn enhanced abrasion resistance. Solute atoms and contents with excellent mechanical properties were selected and their thermal conductivity and thermal expansion behavior were investigated. The addition of Cr atom is expected to form alloys with low thermal conductivity and thermal expansion coefficient. This study provides a better understanding of the state-of-the-art research in low-alloy steel and can be used to guide researchers to explore and develop α-Fe based alloys with improved properties, that can be fabricated in smart and cost-effective manners.

Shaking Table Test for Analysis of Effect on Vibration Control of the Piping System by Steel Coil Damper (강재 코일 댐퍼의 배관시스템 진동제어 효과 분석을 위한 진동대시험)

  • Choi, Song Yi;So, Gi Hwan;Cho, Sung Gook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.39-48
    • /
    • 2022
  • Many piping systems installed in the power plant are directly related to the safety and operation of the plant. Various dampers have been applied to the piping system to reduce the damage caused by earthquakes. In order to reduce the vibration of the piping system, this study developed a steel coil damper (SCD) with a straightforward structure but excellent damping performance. SCD reduces the vibration of the objective structure by hysteretic damping. The new SCD damper can be applied to high-temperature environments since it consists of steel members. The paper introduces a design method for the elastoplastic coil spring, which is the critical element of SCD. The practical applicability of the design procedure was validated by comparing the nonlinear force-displacement curves calculated by design equations with the results obtained from nonlinear finite element analysis and repeated loading test. It was found that the designed SCD's have a damping ratio higher than 25%. In addition, this study performed a set of seismic tests using a shaking table with an existing piping system to verify the vibration control capacity on the piping system by SCD. Test results prove that the SCD can effectively control the displacement vibration of the piping system up to 80%.

Technology Readiness Level Assignment to Industrial Plant System Life Cycle

  • Salim, Shelly;Jo, Raehyeok;Lee, Taekyeong;Lee, Joongyoon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.11 no.2
    • /
    • pp.1-11
    • /
    • 2015
  • During the industrial plant system life cycle, required technologies are developed and assessed to analyze their performance, risks and costs. The assessment is called technology readiness assessment (TRA) and the measure of readiness is called technology readiness level (TRL). The TRL consists of 9 levels and through the TRL assessment, the technology to be developed and its components are assigned to their appropriate TRL. TRL assessment should be performed in each life cycle stages to monitor the technology readiness and analyze the potential risks and costs. However, even though the concept of TRL has been largely adopted by numerous organizations and industry, direct and clear assignment of target TRL for each life cycle stage has been overlooked. Direct mapping/assignment of target TRL for each life cycle has benefits as follow: (1) the technical risks condition of each life cycle stage can be better understood, (2) cost incurred if the technology development is failed can be analyzed in each life cycle stage, and (3) more effective decision making because the technology readiness achievement for each life cycle stages is agreed beforehand. In this paper, we propose a steel-making plant system life cycle and TRL assignment to each of the system life cycle stage. By directly assigning target TRL for each life cycle stages, we look forward to a more coordinated (in terms of exit criteria) and highly effective (in terms of technical risks identification and eventually prevent project failure) technology development and assessment processes.

Effective Thermal Conductivity and Diffusivity of Containment Wall for Nuclear Power Plant OPR1000

  • Noh, Hyung Gyun;Lee, Jong Hwi;Kang, Hie Chan;Park, Hyun Sun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.459-465
    • /
    • 2017
  • The goal of this study is to evaluate the effective thermal conductivity and diffusivity of containment walls as heat sinks or passive cooling systems during nuclear power plant (NPP) accidents. Containment walls consist of steel reinforced concrete, steel liners, and tendons, and provide the main thermal resistance of the heat sinks, which varies with the volume fraction and geometric alignment of the rebar and tendons, as well as the temperature and chemical composition. The target geometry for the containment walls of this work is the standard Korean NPP OPR1000. Sample tests and numerical simulations are conducted to verify the correlations for models with different densities of concrete, volume fractions, and alignments of steel. Estimation of the effective thermal conductivity and diffusivity of the containment wall models is proposed. The Maxwell model and modified Rayleigh volume fraction model employed in the present work predict the experiment and finite volume method (FVM) results well. The effective thermal conductivity and diffusivity of the containment walls are summarized as functions of density, temperature, and the volume fraction of steel for the analysis of the NPP accidents.

Cyclic loading test of abnormal joints in SRC frame-bent main building structure

  • Wang, Bo;Cao, Guorong;Yang, Ke;Dai, Huijuan;Qin, Chaogang
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.417-430
    • /
    • 2021
  • Due to functional requirements, SRC column-RC beam abnormal joints with characteristics of strong beam weak column, variable column section, unequal beam height and staggered height exist in the Steel reinforced concrete (SRC) frame-bent main building structure of thermal power plant (TPP). This paper presents the experimental results of these abnormal joints through cyclic loading tests on five specimens with scaling factor of 1/5. The staggered height and whether adding H-shaped steel in beam or not were changing parameters of specimens. The failure patterns, bearing capacity, energy dissipation and ductile performance were analyzed. In addition, the stress mechanism of the abnormal joint was discussed based on the diagonal strut model. The research results showed that the abnormal exterior joints occurred shear failure and column end hinge flexural failure; reducing beam height through adding H-shaped steel in the beam of abnormal exterior joint could improve the crack resistance and ductility; the abnormal interior joints with different staggered heights occurred column ends flexural failure; the joint with larger staggered height had the higher bearing capacity and stiffness, but lower ductility. The concrete compression strut mechanism is still applicable to the abnormal joints in TPP, but it is affected by the abnormal characteristics.