• Title/Summary/Keyword: Steel Form

검색결과 989건 처리시간 0.026초

궤도건설에 있어서의 Y형 강침목 적용 (Application of Y-Steel Sleeper in Track-Laying)

  • 강보순
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(I)
    • /
    • pp.642-647
    • /
    • 2002
  • Y-form steel sleeper are currently enjoying a renaissance in Germany. Their use on ballast track proves that-especially under extreme conditions and loads-they reliably help ensure high stability and a long service life of the track. In addition to conventional partly mechanised tracklaying methods, a new Method has been developed that for the first time enables Y-form sleepers to be laid on an assembly-line basis at a fast rate and with high quality.

  • PDF

Cyclic behavior of steel beam-concrete wall connections with embedded steel columns (II): Theoretical study

  • Li, Guo-Qiang;Gu, Fulin;Jiang, Jian;Sun, Feifei
    • Steel and Composite Structures
    • /
    • 제23권4호
    • /
    • pp.409-420
    • /
    • 2017
  • This paper theoretically studies the cyclic behavior of hybrid connections between steel coupling beams and concrete shear walls with embedded steel columns. Finite element models of connections with long and short embedded steel columns are built in ABAQUS and validated against the test results in the companion paper. Parametric studies are carried out using the validated FE model to determine the key influencing factors on the load-bearing capacity of connections. A close-form solution of the load-bearing capacity of connections is proposed by considering the contributions from the compressive strength of concrete at the interface between the embedded beam and concrete, shear yielding of column web in the tensile region, and shear capacity of column web and concrete in joint zone. The results show that the bond slip between embedded steel members and concrete should be considered which can be simulated by defining contact boundary conditions. It is found that the loadbearing capacity of connections strongly depends on the section height, flange width and web thickness of the embedded column. The accuracy of the proposed calculation method is validated against test results and also verified against FE results (with differences within 10%). It is recommended that embedded steel columns should be placed along the entire height of shear walls to facilitate construction and enhance the ductility. The thickness and section height of embedded columns should be increased to enhance the load-bearing capacity of connections. The stirrups in the joint zone should be strengthened and embedded columns with very small section height should be avoided.

중대재해사례와 직업강도를 고려한 건축공사 위험성 평가 (A Study on the Risk Rate of Work Type According to the Fatal Accident Cases and the Work Strength in Construction Work)

  • 이종빈;고성석;장성록
    • 한국안전학회지
    • /
    • 제21권4호
    • /
    • pp.102-107
    • /
    • 2006
  • Construction accidents have not decreased in spite of much effort such as new work methods, education and research related to safety works. Specially, many fatal accidents happened in construction works which involve the apartment, building, school, church, hotel, hospital, bank work and the other works. These accidents are mainly caused by unanticipated risk factors. From these reasons, this study researched fatal accidents which happened in construction works during last 13 years($1992{\sim}2004$) and analyzed the input workers and a work period of construction work. According to the input workers and a work period, the results are as following. During 13years($1992{\sim}2004$), the fatal accidents, related to the construction work, were happened to the 1,977 cases. These results were occupied the 21.32% of the total industry accidents. According to the result of the construction, the fatal accident rate of a concrete form work was the highest rate of 16.24% (321 cases) and a temporary work, a steel frame work was the each rate of 12.39%(245 cases), 10.07%(199 cases). Comparing to other work types, the fatal accident rate of those three work types(concrete form work, temporary work, steel work) was represented highly. We surveyed input workers and work period of construction work site. From the result of survey, input workers of a concrete form work were occupied with 13,720. The risk rate of the work type, which was considered input workers and work period, was represented 0.3622(a steel frame work), 0.1142(a temporary work), 0.0782(a tower crane) and 0.0772(a concrete work).

Studies on post-tensioned and shaped space-truss domes

  • Schmidt, Lewis C.;Li, Hewen
    • Structural Engineering and Mechanics
    • /
    • 제6권6호
    • /
    • pp.693-710
    • /
    • 1998
  • This paper concerns studies on the shape formation of post-tensioned and shaped steel domes. The post-tensioned and shaped steel domes, assembled initially at ground level in an essentially flat condition, are shaped to a curved space form and erected into the final position by means of a post-tensioning technique. Based on previous studies on this shape formation principle, three post-tensioned and shaped steel domes have been constructed. The results of the shape formation tests and finite element analyses are reported in this paper. It is found that the first two test domes did not furnish a part-spherical shape as predicted by finite element analyses, because the movements of some mechanisms were not controlled sufficiently. With a revised post-tensioning method, the third dome obtained the theoretical prediction. The test results of the three post-tensioned and shaped domes have shown that a necessary condition to form a desired space shape from a planar layout with low joint stiffnesses is that the movements of all the existing mechanisms must be effectively controlled as indicated by the finite element analysis. The extent of the maximum elastic deformation of a post-tensioned and shaped steel structure is determined by the strength of the top chords and their joints. However, due to the semi-rigid characteristic of the top chord joints, the finite element analyses cannot give a close prediction for the maximum elastic deformations of the post-tensioned and shaped steel domes. The results of the current studies can be helpful for the design and construction of this type of structure.

Capillary Water Absorption Properties of Steel Fiber Reinforced Coal Gangue Concrete under Freeze-Thaw Cycles

  • Qiu, Jisheng;Zheng, Juanjuan;Guan, Xiao;Pan, Du;Zhang, Chenghua
    • 한국재료학회지
    • /
    • 제27권8호
    • /
    • pp.451-458
    • /
    • 2017
  • The service life of coal gangue concrete(CGC) strongly depends on the capillary water absorption, this water absorption is susceptible to freeze-thaw cycles. In this paper, the cumulative water absorption and sorptivity were obtained to study the effects of 0, 0.5, 1.0, and 1.5 % steel fiber volume fraction added on the water absorption of CGC. Sorptivity and freeze-thaw tests were conducted, and the capillary water absorption was evaluated by the rate of water absorption(sorptivity). Three prediction models for the initial sorptivity of steel fiber reinforced coal gangue concrete(SFRCGC) under freeze-thaw cycles were established to evaluate the capillary water absorption of SFRCGC. Results showed that, without freeze-thaw cycles, the water absorption of CGC decreased when steel fiber at 1.0 % volume fraction was added, however, the water absorption increased with the addition of 0.5 or 1.5 % steel fibers. Once the SFRCGC specimens were exposed to freeze-thaw cycles, the water absorption of SFRCGC significantly increased, and 1.0 % steel fiber in volume fraction added to CGC caused the lowest water absorption, except for the case of the sample without steel fibers added. The CGC with steel fiber at 1.0 % volume fraction performed better. The SFRCGC has a strong response to freeze-thaw cycles. Results also showed that the linear function prediction model is practical in the field of engineering because of its simple form and a relatively high precision. Although the polynomial prediction model presents the highest computation precision among the three models, the complicated form and too many coefficients make it impractical for engineering applications.

590 MPa TRIP강의 선택적 표면산화 거동과 표면 산화막이 도금특성에 미치는 영향 (Selective Surface Oxidation of 590MPa TRIP Steel and Its Effect on Hot-Dip Galvanizability)

  • 김성환;임준모;허주열;이석규;박노범;김종상
    • 대한금속재료학회지
    • /
    • 제49권4호
    • /
    • pp.281-290
    • /
    • 2011
  • In order to gain better understanding of the selective surface oxidation and its influence on the galvanizability of a transformation-induced plasticity (TRIP) assisted steel containing 1.5 wt.% Si and 1.6 wt.% Mn, a model experiment has been carried out by depositing Si and Mn (each with a nominal thickness of 10 nm) in either monolayers or bilayers on a low-alloy interstitial-free (IF) steel sheet. After intercritical annealing at $800^{\circ}C$ in a $N_2$ ambient with a dew point of $-40^{\circ}C$, the surface scale formed on 590 MPa TRIP steel exhibited a microstructure similar to that of the scale formed on the Mn/Si bilayer-coated IF steel, consisting of $Mn_{2}SiO_{4}$ particles embedded in an amorphous $SiO_{2}$ film. The present study results indicated that, during the intercritical annealing process of 590 MPa TRIP steel, surface segregation of Si occurs first to form an amorphous $SiO_{2}$ film, which in turn accelerates the out-diffusion of Mn to form more stable Mn-Si oxide particles on the steel surface. During hot-dip galvanizing, particulate $Fe_{3}O_{4}$, MnO, and Si-Mn oxides were reduced more readily by Al in a Zn bath than the amorphous $SiO_{2}$ film. Therefore, in order to improve the galvanizability of 590 TRIP steel, it is most desirable to minimize the surface segregation of Si during the intercritical annealing process.

플라이애쉬 시멘트 모르터를 사용한 비탈형 영구거푸집 개발에 관한 실험적연구 (An Experimental Study on The Development of fly-ash Cement Mortal Permanent)

  • 김형남;김우재;김성식;김영희;정상진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.481-486
    • /
    • 1999
  • According to results of this research Fly-ash Cement permanent-form production was found to be possible by fly-ash mortal. The compress strength 350kg/$\textrm{cm}^2$, banding strength 120kg/$\textrm{cm}^2$ were possible material separting and bleeding by excessive W/C rate was decreased permanent-form made by polymer solved high price of polymer by fly-ash. Model material was made by result of first research. There were no minute-crack on beam form and out surface of form was very smooth, So filling degree seemed desirable length of form after steaming curing was maintained as expected. with these results production of form seemed possible. In the banding load test, fly-ash showed increase of maxim load 12% than RC. in the case of minute-crack, comparing with RC, fly-ash showed no crack at connect. at the first stage under continuing loading size of crack increased. These phenomena seemed to be based on contribution of stress of inner bars in permanent-form. in the test of defection, fly-ash shower about 10% beam load increase than RC. in the case of beam defection, RC showed sudden decrease of tolerance at maxim load and total breaking, but permanent-form showed breaking of bending maintaining defection with contribution of steel stress ($\Phi$6 wire-mash). There phenomenic seemed to be attributed to increase of surface and steel tolerance of form. According to construction explacemaion, it was guessed that each panel was constructed by conner-steels in form edge. so cohesiveness was small. on these bases. keeping width of horizontal band 30cm, form-panel of 20mm width was found to be of use. Permanent-form was found to be efficient in compressibleness, defection, safety and use of Fly-ash mortal.

  • PDF

철골보의 부동탄성처짐을 고려한 비합성데크 일방향 슬래브의 근사적인 휨모멘트 계수 평가 (Evaluation for Approximate Bending Moment Coefficients of Non-Composite Form Deck One-Way Slab considering Unequaled Elastic Deflection of Steel Beams)

  • 김호수;임영도
    • 한국강구조학회 논문집
    • /
    • 제18권3호
    • /
    • pp.373-383
    • /
    • 2006
  • 거푸집용 데크 플레이트를 사용하는 일방향 슬래브는 구조형식상 4변을 강성이 다른 철골보로 지지된 플레이트 요소이지만 일반실무에서는 철근콘크리트구조 설계기준을 적용하여 일정폭을 가진 연속보로 간주하여 근사적인 해석법을 사용하고 있다. 거푸집용 비합성데크 일방향 슬래브를 지지하고 있는 철골보는 지지형태 및 위치에 따라 서로 다른 처짐이 발생되는 탄성지점으로서 지점별로 발생되는 휨모멘트 값큰 차이가 난다. 따라서, 본 연구는 단부의 부동처짐 효과를 고려한 근사해석법상의 휨모멘트 계수를 합리적으로 산정하기 위하여 다양한 해 석모델을 가정하였으며, 해석상의 변수로는 고정하중에 대한 활하중의 비율, 스팬별 활하중의 배열(패턴재하) 및 스팬길이를 고려하였다. 또한 해석방법으로 3차원 플레이트 유한요소해석, 이차원 탄성지점해석, 이차원 무한강성지점해석, 설계기준상의 근사해석을 각각 적용하여 결과값을 비교 분석하였다.

광양제철소 내의 귀화식물상의 특성 (Characteristics of Naturalized Plants in the Gwangyang Steel Works)

  • 오현경;김달호;김도균;남웅
    • 한국환경복원기술학회지
    • /
    • 제12권3호
    • /
    • pp.9-20
    • /
    • 2009
  • The naturalized plants in the Gwangyang Steel Works were listed 70 taxa; 18 families, 51 genus, 66 species, 3 varieties and 1 form. by field survey. The naturalized plants divided into pattern by survey of annual plants ratio is 31 taxa (44.3%) by life form spectrum and perennials is 23 taxa (32.9%), biennials is 13 taxa (18.5%), two trees (Robinia pseudoacacia, Alianthus altissima) and one shrub (Amorpha furticosa) were founded. According to analysis results form place of origin, Europe covered 26 taxa (37.1%), North America covered 23 taxa (32.8%). Naturalized degree 3 plants, as common but not abundant, founded as 24 taxa (35.0%) were hold most highly ratio, naturalized degree 1 plants founded as 3 taxa (4.0%) were hold lowest. Introduction period 1 covered 31 taxa (44.3%) have had highest score and period 2 covered 11 taxa (15.7%) have had lowest scores. In addition, the urbanization index based on 271 taxa was 25.8% and 2 taxa (Solanum carolinense, Ambrosia artemisiaefolia) is growing in the Gwangyang Steel Works by ecosystem disturbing wild plants. Meanwhile, Ambrosia artemisiaefolia have confirmed into several tens~hundred in the Gwangyang Steel Works were damage the human body of plants develop an allergy to pollen. Solanium carolinense have composed several large communities about $10m{\times}10m$ ($100m^2$) and hold a dominant position, so management plan of the sequel of monitoring them might be required.

기포를 혼입한 섬유보강 셀룰러 스프레이 콘크리트 공법의 분산성 및 휨인성 평가 (Dispersibility and Flexural Toughness Evaluation of Fiber Reinforcement Cellular Sprayed Concrete by added Foam)

  • 이겨레;한승연;남궁경;윤경구
    • 한국산학기술학회논문지
    • /
    • 제16권6호
    • /
    • pp.4192-4200
    • /
    • 2015
  • 본 논문에서는 방호 방폭 구조물용 스프레이 콘크리트 재료 개발을 위해 기포를 혼입하여 강섬유의 분산성을 향상시킴으로서 강섬유 혼입 고인성 셀룰러 스프레이 콘크리트 재료를 개발하였다. 강섬유의 분산성 향상을 위해 과다하게 투입된 기포는 스프레이를 통해 대부분 소산하여 최종적으로 3 % ~ 6 % 미만의 적정 혼입율을 만족하게 되며, 이 상태에서 압축강도 및 휨인성 특성에 대해 고찰하였다. 압축강도 시험결과 28일 및 56일 강도에서 우수한 강도성능을 나타냈으며, 휨강도 및 휨인성 특성 또한 우수한 성능을 보여 과다하게 투입된 기포는 강섬유의 분산성을 향상 시키지만, 강도저하를 유발하지는 않는 것으로 판단된다. 그러나 화상분석을 통한 공극구조 분석 결과 소요의 간격계수와 비표면적을 얻는데 실패하였으며, 이것은 스프레이에 의한 공기량 소산 효과가 너무 커 간격계수가 다소 크게 측정된 것으로 판단된다.