DOI QR코드

DOI QR Code

Selective Surface Oxidation of 590MPa TRIP Steel and Its Effect on Hot-Dip Galvanizability

590 MPa TRIP강의 선택적 표면산화 거동과 표면 산화막이 도금특성에 미치는 영향

  • Kim, Seong-Hwan (Department of Materials Science & Engineering, Korea University) ;
  • Im, Jun-Mo (Department of Materials Science & Engineering, Korea University) ;
  • Huh, Joo-Youl (Department of Materials Science & Engineering, Korea University) ;
  • Lee, Suk-Kyu (POSCO Technical Research Laboratories) ;
  • Park, Rho-Bum (POSCO Technical Research Laboratories) ;
  • Kim, Jong-Sang (POSCO Technical Research Laboratories)
  • 김성환 (고려대학교 신소재공학부) ;
  • 임준모 (고려대학교 신소재공학부) ;
  • 허주열 (고려대학교 신소재공학부) ;
  • 이석규 (POSCO 기술연구원 표면처리연구그룹) ;
  • 박노범 (POSCO 기술연구원 표면처리연구그룹) ;
  • 김종상 (POSCO 기술연구원 표면처리연구그룹)
  • Received : 2011.01.27
  • Published : 2011.04.25

Abstract

In order to gain better understanding of the selective surface oxidation and its influence on the galvanizability of a transformation-induced plasticity (TRIP) assisted steel containing 1.5 wt.% Si and 1.6 wt.% Mn, a model experiment has been carried out by depositing Si and Mn (each with a nominal thickness of 10 nm) in either monolayers or bilayers on a low-alloy interstitial-free (IF) steel sheet. After intercritical annealing at $800^{\circ}C$ in a $N_2$ ambient with a dew point of $-40^{\circ}C$, the surface scale formed on 590 MPa TRIP steel exhibited a microstructure similar to that of the scale formed on the Mn/Si bilayer-coated IF steel, consisting of $Mn_{2}SiO_{4}$ particles embedded in an amorphous $SiO_{2}$ film. The present study results indicated that, during the intercritical annealing process of 590 MPa TRIP steel, surface segregation of Si occurs first to form an amorphous $SiO_{2}$ film, which in turn accelerates the out-diffusion of Mn to form more stable Mn-Si oxide particles on the steel surface. During hot-dip galvanizing, particulate $Fe_{3}O_{4}$, MnO, and Si-Mn oxides were reduced more readily by Al in a Zn bath than the amorphous $SiO_{2}$ film. Therefore, in order to improve the galvanizability of 590 TRIP steel, it is most desirable to minimize the surface segregation of Si during the intercritical annealing process.

Keywords

Acknowledgement

Supported by : POSCO

References

  1. B. C. De Cooman, Curr. Opin. Solid State Mater. Sci. 8, 285 (2004). https://doi.org/10.1016/j.cossms.2004.10.002
  2. Y. F. Gong, S. Birosca, H. S. Kim, and B. C. De Cooman, J. Microsc. 230, 424 (2008). https://doi.org/10.1111/j.1365-2818.2008.02002.x
  3. E. M. Bellhouse, A. I. M. Mertens, and J. R. Mcdermid, Mat. Sci. & Eng. A 463, 147 (2007). https://doi.org/10.1016/j.msea.2006.09.117
  4. S. H. Jeon, K. G. Chin, and D. R. Kim, J. Kor. Inst. Met. & Mater. 46, 58 (2008).
  5. P. Drillet, Z. Zermout, D. Bouleau, J. Mataigne, and S. Claessens, Galvatech'04 Conf. Proc. p. 1123, Chicago (2004).
  6. J. Mahieu, S. Claessens, and B. C. De Cooman, Metall. Mater. Trans. A 32, 2905 (2001). https://doi.org/10.1007/s11661-001-1042-5
  7. Y. Suzuki, T. Yamashita, Y. Sugimoto, S. Fujita, and S. Yamaguchi, ISIJ Int. 49, 564 (2009). https://doi.org/10.2355/isijinternational.49.564
  8. S. H. Jeon, K. G. Chin, K. S. Shin, H. S. Sohn, and D. R. Kim, J. Kor. Inst. Met. & Mater. 46, 289 (2008).
  9. S. H. Jeon, K. S. Shin, H. S. Sohn, and D. R. Kim, J. Kor. Inst. Met. & Mater. 46, 427 (2008).
  10. E. M. Bellhouse and J. R. Mcdermid, Metall. Mater. Trans. A 41, 1539 (2010). https://doi.org/10.1007/s11661-010-0192-8
  11. Y. F. Gong, H. S. Kim, and B. C. De Cooman, ISIJ Int. 48, 1745 (2008). https://doi.org/10.2355/isijinternational.48.1745
  12. Y. F. Gong, H. S. Kim, and B. C. De Cooman, ISIJ Int. 49, 557 (2009). https://doi.org/10.2355/isijinternational.49.557
  13. T. Van De Putte, D. Loison, J. Penning, and S. Claessens, Metall. Mater. Trans. A 39, 2875 (2008). https://doi.org/10.1007/s11661-008-9636-9
  14. Y. K. Kim, M. S. Shin, C. Tang, and J. H. Lee, Metall. Mater. Trans. B 41, 872 (2010). https://doi.org/10.1007/s11663-010-9366-4
  15. D. J. Young, High temperature oxidation and corrosion of metals, p.34, Elsevier, New York (2008).
  16. J. H. Huang and E. Rosen, Phys. Chem. Minerals. 21, 228 (1994).
  17. L. Duraes, B. F. O. Costa, R. Santos, A. Correia, J. Campos, and A. Portugal, Mat. Sci. & Eng. A 465, 199 (2007). https://doi.org/10.1016/j.msea.2007.03.063
  18. A. R. Marder, Progr. Mater. Sci. 45, 191 (2000). https://doi.org/10.1016/S0079-6425(98)00006-1