• 제목/요약/키워드: Steel Company

검색결과 365건 처리시간 0.027초

AE센서를 이용한 콘베이어 벨트 이물질 감지 장치에 관한 연구(III) -지능형 콘베이어 벨트 손상 검출 시스템 개발- (A Study on a different Substance Detection system of Conveyer Belt by AE Sensor(III) -Development of Intelligent Conveyer Belt Defect Detection system-)

  • 정양희;김이곤;배영철;김경민;유일현;이보희;강성준
    • 한국정보통신학회논문지
    • /
    • 제4권4호
    • /
    • pp.803-808
    • /
    • 2000
  • This paper presents development of a different substance monitoring system base reliable detection between the conveyer belt and hopper used for materials transport line of steel company. Conventional detection method of a piece of iron separation system is losed the confidence, because of the place with bad surroundings of measurement so much that materials production line are completely exposed to dust, moisture and vibration. For the solution of this problem, we developed a different substance detection system using the acoustic emittion sensor and one chip microprocessor which is available for bad surroundings and inexpensive. The reliability of the system was estimated by experiment.

  • PDF

Post-buckling analysis of geometrically imperfect tapered curved micro-panels made of graphene oxide powder reinforced composite

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Barati, Mohammad Reza;Hamouda, AMS
    • Steel and Composite Structures
    • /
    • 제36권1호
    • /
    • pp.63-74
    • /
    • 2020
  • The present research investigates post-buckling behavior of geometrically imperfect tapered curved micro-panels made of graphene oxide powder (GOP) reinforced composite. Micro-scale effects on the panel structure have been included based on strain gradient elasticity. Micro-panel is considered to be tapered based on thickness variation along longitudinal direction. Weight fractions of uniformly and linearly distributed GOPs are included in material properties based on Halpin-Tsai homogenization scheme considering. Post-buckling curves have been determined based on both perfect and imperfect micro-panel assumptions. It is found that post-buckling curves are varying with the changes of GOPs weight fraction, geometric imperfection, GOP distribution type, variable thickness parameters, panel curvature radius and strain gradient.

Investigating nonlinear forced vibration behavior of multi-phase nanocomposite annular sector plates using Jacobi elliptic functions

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Barati, Mohammad Reza;Hamouda, A.M.S.
    • Steel and Composite Structures
    • /
    • 제36권1호
    • /
    • pp.87-101
    • /
    • 2020
  • A multi-scale epoxy/CNT/fiberglass annular sector plate is studied in this paper in the view of determining nonlinear forced vibration characteristics. A 3D Mori-Tanaka model is employed for evaluating multi-scale material properties. Thus, all of glass fibers are assumed to have uni-direction alignment and CNTs have random diffusion. The geometry of annular sector plate can be described based on the open angle and the value of inner/outer radius. In order to solve governing equations and derive exact forced vibration curves for the multi-scale annular sector, Jacobi elliptic functions are used. Obtained results demonstrate the significance of CNT distribution, geometric nonlinearity, applied force, fiberglass volume, open angle and fiber directions on forced vibration characteristics of multi-scale annular sector plates.

금속분말 혼합체의 압력의존 항복모델과 유한요소법을 이용한 금형압분 공정 시 고형화 해석 (Pressure-Dependent Yield Model for Metallic Powder Mixtures and Their Densification Behavior During Die Compaction as Analyzed by the Finite Element Method)

  • 윤승채;김택수;강승구;김형섭
    • 대한금속재료학회지
    • /
    • 제47권9호
    • /
    • pp.567-572
    • /
    • 2009
  • The densification behaviors of mixtures of copper and steel powders during cold die compaction were investigated. We proposed the pressure-dependent yield function based on the rule of the mixtures of each yield function of a critical relative density type. The constitutive equations were implemented into a finite element program (DEFORM2D) to analyze the densification and deformation behavior of powder mixtures, and the simulated results are in good agreement with the experimental results in reference studies.

Simulation and modeling for stability analysis of functionally graded non-uniform pipes with porosity-dependent properties

  • Peng Zhang;Jun Song;Tayebeh Mahmoudi
    • Steel and Composite Structures
    • /
    • 제48권2호
    • /
    • pp.235-250
    • /
    • 2023
  • The present paper examines the stability analysis of the buckling differentiae of the small-scale, non-uniform porosity-dependent functionally graded (PD-FG) tube. The high-order beam theory and nonlocal strain gradient theory are operated for the mathematical modeling of nanotubes based on the Hamilton principle. In this paper, the external radius function is non-uniform. In contrast, the internal radius is uniform, and the cross-section changes along the tube length due to these radius functions based on the four types of useful mathematical functions. The PD-FG material distributions are varied in the radial direction and made with ceramics and metals. The governing partial differential equations (PDEs) and associated boundary conditions are solved via a numerical method for different boundary conditions. The received outcomes concerning different presented parameters are valuable to the design and production of small-scale devices and intelligent structures.

Stability characteristic of bi-directional FG nano cylindrical imperfect composite: Improving the performance of sports bikes using carbon nanotubes

  • Chaobing Yan;Tong Zhang;Ting Zheng;Tayebeh Mahmoudi
    • Steel and Composite Structures
    • /
    • 제50권4호
    • /
    • pp.459-474
    • /
    • 2024
  • Classical and first-order nonlocal beam theory are employed in this study to assess the thermal buckling performance of a small-scale conical, cylindrical beam. The beam is constructed from functionally graded (FG) porosity-dependent material and operates under the thermal conditions of the environment. Imperfections within the non-uniform beam vary along both the radius and length direction, with continuous changes in thickness throughout its length. The resulting structure is functionally graded in both radial and axial directions, forming a bi-directional configuration. Utilizing the energy method, governing equations are derived to analyze the thermal stability and buckling characteristics of a nanobeam across different beam theories. Subsequently, the extracted partial differential equations (PDE) are numerically solved using the generalized differential quadratic method (GDQM), providing a comprehensive exploration of the thermal behavior of the system. The detailed discussion of the produced results is based on various applied effective parameters, with a focus on the potential application of nanotubes in enhancing sports bikes performance.

Achieving wetting in molten lead for ultrasonic applications

  • Jonathan Hawes;Jordan Knapp;Robert Burrows;Robert Montague;Jeff Arndt;Steve Walters
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.437-443
    • /
    • 2024
  • The development and testing of inspection equipment is necessary for the safe deployment of advanced nuclear reactors. One proposed advanced reactor design is Westinghouse's lead-cooled fast reactor (LFR). In this paper, the process of achieving adequate wetting for an ultrasonic under-lead viewing system is discussed and results presented. Such a device would be used for inspection in the molten lead core during reactor outages. Wider tests into the wetting of various materials in molten lead at microscale were performed using electron microscopy. The possible mechanisms and kinetics for materials wetting in lead, particularly stainless steel and nickel, are proposed and discussed.

Stability analysis of the nonuniform functionally graded cylindrical small-scale beam structures: Application in sport structures

  • Changyou Wang;Mostafa Habibi;Tayebeh Mahmoudi
    • Steel and Composite Structures
    • /
    • 제52권1호
    • /
    • pp.15-29
    • /
    • 2024
  • This research investigates the application of novel functionally graded small-scale materials (FGSMs) in sport and sports structures through an engineering design lens. Functionally graded materials (FGMs) offer tailored material properties, promising enhanced performance and durability. Utilizing an interdisciplinary approach, this study explores the integration of FGSMs in sports equipment and infrastructure. Design considerations specific to sports engineering are emphasized, including lightweight, high-strength materials capable of withstanding dynamic loads. Advanced manufacturing techniques, such as additive manufacturing and nanotechnology, enable precise control over material composition and microstructure. Computational modeling is employed to evaluate the mechanical behavior and performance characteristics of FGSM-based components. Through case studies and comparative analyses, the study showcases the potential of FGSMs to revolutionize sports equipment and structures, offering improved performance, safety, and sustainability. This research contributes to the advancement of sports engineering by exploring the design and application of FGSMs in sport and sports structures.

가설기자재 임대업체를 위한 개별 가설기자재 자재/품질/납품관리 기준(Guide) 개발 (Development of Individual Temporary Equipment Material/Quality/Delivery Management Standards(Guide) for Temporary Equipment Rental Company)

  • 이준호;김준상;유건희;조세현;김정렬;김영석
    • 한국건설관리학회논문집
    • /
    • 제25권1호
    • /
    • pp.62-72
    • /
    • 2024
  • 국내 가설기자재의 유통구조상 80% 이상의 가설기자재가 반복되고 재사용되기에 가설기자재에 대한 품질관리는 필수적이다. 이러한 중요성으로 인해 국토교통부는 강재 파이프 서포트 등의 가설기자재를 대상으로 가설기자재 품질관리 기준을 제시하였지만, 샘플링 품질시험으로 품질을 관리하고 있어 전반적인 가설기자재의 품질을 확인할 수 없는 실정이다. 또한, 가설지자재 임대업체를 위한 품질관리 기준이 존재하지만 육안검사에 의한 정성적 검사 기준 위주로 제시되고 있어 실무적 활용성은 매우 낮은 것으로 조사 및 분석되었다. 따라서 본 연구의 목적은 건설현장 반입 이전에 가설기자재의 품질을 선제적으로 확보할 수 있도록 가설기자재 임대업체를 위한 개별 가설지자재 자재/품질/납품관리 기준(Guide)를 개발하는 것이다. 본 연구를 통해 개발된 기준이 국내 가설기자재 임대업체에 적용될 경우, 국내 중·소규모 가설기자재 임대업체의 가설기자재 품질 수준이 제고됨에 따라 품질이 확보된 양질의 가설기자재가 건설현장에 반입되어 가설구조물 관련 안전사고 저감될 수 있을 것으로 기대된다.

대형 주물공정 용접작업장의 건강 위해인자 및 환기 개선 (Health Risk Factors and Ventilation Improvements in Welding Operation at Large-sized Casting Process)

  • 정종현;정유진;이상만;이정희;손병현;임현술
    • 청정기술
    • /
    • 제20권2호
    • /
    • pp.171-178
    • /
    • 2014
  • 이 연구에서는 대형 주물공정 용접작업장 근로자들의 건강보호 및 작업환경 개선을 위해 위해인자 조사 및 분석작업을 수행하였다. 또한, 대상 작업장의 작업환경을 개선하기 위해 측정 및 전산유체해석 모델링을 수행한 후 효과적인 환기방법을 제안하였다. 대형 주물공정 용접작업장 근로자들의 건강 위해인자를 조사한 결과, A사는 산화철분진, B사와 C사는 용접흄, D사는 용접 흄과 산화철분진이 주오염원인 것으로 확인되었다. 작업자 호흡영역에서의 흄 농도는 $0.05{\sim}4.37mg/m^3$이었고, 용접작업장 공기 중 흄 농도는 $0.13{\sim}7.54mg/m^3$이었다. 또한, 용접작업 시 최적의 환기방법을 제안하기 위해 측정 및 전산유체해석 모사를 수행한 결과, 배기공정의 경우에는 배기 덕트를 용접점에 근접시켜 국소배기를 실시하는 것이 효과적인 것으로 나타났다. 급기공정의 경우에는 개구부 끝 부분에서 급기를 하며 급기용 팬은 작업 공간 외부에 설치하는 것이 효과적일 것으로 나타났다. 향후 대형 주물공정 용접작업장의 터널형 반밀폐 공간에 대한 환기방법을 표준화한다면 주물산업 및 조선업 등에 종사하는 용접 근로자들의 건강보호 및 작업환경 개선에 매우 효과적일 것으로 판단된다.