DOI QR코드

DOI QR Code

Achieving wetting in molten lead for ultrasonic applications

  • Received : 2023.08.08
  • Accepted : 2023.10.15
  • Published : 2024.02.25

Abstract

The development and testing of inspection equipment is necessary for the safe deployment of advanced nuclear reactors. One proposed advanced reactor design is Westinghouse's lead-cooled fast reactor (LFR). In this paper, the process of achieving adequate wetting for an ultrasonic under-lead viewing system is discussed and results presented. Such a device would be used for inspection in the molten lead core during reactor outages. Wider tests into the wetting of various materials in molten lead at microscale were performed using electron microscopy. The possible mechanisms and kinetics for materials wetting in lead, particularly stainless steel and nickel, are proposed and discussed.

Keywords

Acknowledgement

The authors would like to gratefully acknowledge practical assistance and contributions to the work from the following; Richard Todd (Ionix), Adrian Crimp, Jake Rusby (Univ. Bristol Physics Workshop), Elen Williams, Laurie Crouch (NNL). The work shown in this paper was performed under the Advanced Modular Reactor programme.

References

  1. P. Ferroni, et al., The Westinghouse Lead Fast Reactor: Overview and Update on Development Program, 2023.
  2. R.N. Ord, R.W. Smith, Development of an Under-sodium Ultrasonic Scanner for InReactor Surweillance, Jan. 1972, https://doi.org/10.2172/4648095. HEDL-TME-72-91, 4648095.
  3. R. Hans, E. Kranz, H. Weiss, Under sodium viewing - a method to identify objects in an opaque medium, Liq. Met. Eng. Technol. (1984), 1 no. 1.
  4. K. Swaminathan, A. Rajendran, G. Elumalai, The development and deployment of an ultrasonic under-sodium viewing system in the fast breeder test reactor, IEEE Trans. Nucl. Sci. 37 (1990) 1571-1577.
  5. A. Rajendran, C. Asokane, G. Elumalai, K. Swaminathan, Development of an ultrasonic UnderSodium scanner for the fast breeder test reactor, NDT Nucl. Ind. Proc. 14th World Conf. Non-Destr. Test. 2 (1996) 349-352.
  6. H. Karasawa, M. Izumi, T. Suzuki, S. Nagai, M. Tamura, S. Fujimori, Development of under-sodium three-dimensional visual inspection technique using matrix-arrayed ultrasonic transducer, J. Nucl. Sci. Technol. 37 (9) (Sep. 2000), 9, https://doi.org/10.1080/18811248.2000.9714955.
  7. M. Ando, S. Kubo, Y. Kamishima, T. Iitsuka, Study on In-Service Inspection Program and Inspection Technologies for Commercialized Sodium-Cooled Fast Reactor, in: Proceedings of the 14th International Conference on Nuclear Engineering. Volume 3: Structural Integrity; Nuclear Engineering Advances; Next Generation Systems; Near Term Deployment and Promotion of Nuclear Energy, ASME, Miami, Florida, USA, July 17-20, 2006, pp. 635-642. https://doi.org/10.1115/ICONE14-89558.
  8. K. Wang, H.-T. Chien, T.W. Elmer, W.P. Lawrence, D.M. Engel, S.-H. Sheen, Development of ultrasonic waveguide techniques for under-sodium viewing, NDT E Int. 49 (Jul. 2012) 71-76, https://doi.org/10.1016/j.ndteint.2012.03.006.
  9. H.-W. Kim, Y.-S. Joo, C.-G. Park, J.-B. Kim, J.-H. Bae, Ultrasonic imaging in hot liquid sodium using a plate-type ultrasonic waveguide sensor, J. Nondestruct. Eval. 33 (4) (Dec. 2014), 4, https://doi.org/10.1007/s10921-014-0262-8.
  10. H.-T. Chien, T. Elmer, D.M. Engel, W.P. Lawrence, Development and Demonstration of Ultrasonic Under-sodium Viewing System for SFRs, 2017. IAEACN-245-139.
  11. J.W. Griffin, et al., Under-Sodium Viewing: A Review of Ultrasonic Imaging Technology for Liquid Metal Fast Reactors, Mar. 2009, https://doi.org/10.2172/1010482. PNNL-18292, 1010482.
  12. E.G. Tarpara, V.H. Patankar, N.V. Varier, Under Sodium Ultrasonic Viewing for Fast Breeder Reactors: a Review, 2016, p. 74. BARC/2016/E/014.
  13. R. Kazys, et al., Investigation of ultrasonic properties of a liquid metal used as a coolant in accelerator driven reactors, in: 2002 IEEE Ultrasonics Symposium, 2002. Proceedings., IEEE, Munich, Germany, 2002, pp. 815-818, https://doi.org/10.1109/ULTSYM.2002.1193522.
  14. R. Kazys, et al., Development of ultrasonic sensors for operation in a heavy liquid metal, IEEE Sens. J. 6 (5) (Oct. 2006), 5, https://doi.org/10.1109/JSEN.2006.877997.
  15. E. Jasi, Ultrasonic imaging techniques for non-destructive testing of nuclear reactors, cooled by liquid metals: review, ULTRASOUND (2007) 5.
  16. R. Kazys, A. Voleisis, R. Sliteris, B. Voleisiene, L. Mazeika, H.A. Abderrahim, Research and development of radiation resistant ultrasonic sensors for quasi- image forming systems in a liquid lead-bismuth, ULTRASOUND 62 (2007) 9.
  17. M. Dierckx, D. Van Dyck, L. Vermeeren, W. Bogaerts, Research towards ultrasonic systems to assist in-vessel manipulations in liquid metal cooled reactors, Nucl. Sci. IEEE Trans. 61 (4) (2014), 4.
  18. V.D. Svet, D.A. Dement'ev, Ultrasound imaging in nuclear reactors cooled by liquid metals, Open J. Acoust. (2015) 11-24, https://doi.org/10.4236/oja.2015.51002, vol. 05, no. 01.
  19. R. Kazys, V. Vaskeliene, High temperature ultrasonic transducers: a review, Sensors 21 (9) (May 2021), 9, https://doi.org/10.3390/s21093200.
  20. https://ionixadvancedtechnologies.co.uk/.
  21. Ionix HotSense Product Datasheet, Sep. 2020 [Online]. Available: https://ionixadvancedtechnologies.co.uk/products-3/continuous-monitoring-transducer/#hotsense-380-specifications.
  22. Mao Wu, Lingling Chang, Lin Zhang, Xinbo He, Xuanhui Qu, Effects of roughness on the wettability of high temperature wetting system, Surf. Coating. Technol. ISSN: 0257-8972 287 (2016) 145-152. https://doi.org/10.1016/j.surfcoat.2015.12.092.
  23. Z. Qi, L. Liao, R. Wang, Y. Zhang, Z. Yuan, Roughness-dependent wetting and surface tension of molten lead on alumina, Trans. Nonferrous Met. Soc. China 31 (8) (Aug. 2021) 2511-2521, https://doi.org/10.1016/S1003-6326(21)65671-6.
  24. K.J. Kubiak, M.C.T. Wilson, T.G. Mathia, Ph. Carval, Wettability versus roughness of engineering surfaces, Wear 271 (3-4) (Jun. 2011) 523-528, https://doi.org/10.1016/j.wear.2010.03.029.