• Title/Summary/Keyword: Steel Casting

Search Result 339, Processing Time 0.018 seconds

Applicability of Air Cooling Heat-treatment for a Duplex Stainless Steel Casting (2상 스테인레스 주강의 공냉 열처리 적용 가능성)

  • Kim, Bong-Whan;Yang, Sik;Shin, Je-Sik;Lee, Sang-Mok;Moon, Byung-Moon
    • Journal of Korea Foundry Society
    • /
    • v.26 no.1
    • /
    • pp.17-26
    • /
    • 2006
  • The substitution of cooling method from water quenching to air cooling after solution heat treatment was aimed for the development of a convenient and economical heat treatment process of duplex stainless steels without deterioration of mechanical and corrosion resistant properties for the industry. In order to achieve this goal, the mechanical properties and corrosion properties of a ASTM A890-4A duplex stainless steel were systematically investigated as functions of casting condition and cooling method after solution heat treatment. A 3-stepped sand mold and a permanent Y-block mold were used to check the effects of solidification structure and cooling rate after solution heat treatment. The microstructural characteristics such as the ferrite/austenite phase ratio and the precipitation behavior of ${\sigma}$ phase and carbides were investigated by combined analysis of OM and SEM-EDX with an aid of TTT diagram. Hardness and tension test were performed to evaluate the mechanical properties. Impact property at $-40^{\circ}C$ and corrosion resistance were also examined to check the possibility of the industrial application of this basic study. Throughout this investigation, air-cooling method was proved to effectively substitute for water-quenching process after the solution heat treatment, when the duplex stainless steel was sand mold cast with a thickness below 15 mm or permanent mold cast with a thickness below 20 mm.

Characterization and Mechanical Properties of Stainless Steel 316L Fabricated Using Additive Manufacturing Processes (적층식 제조 공정을 활용한 스테인레스 316L 제작기술의 특징과 기계적 속성)

  • Choi, Cheol;Jung, Mihee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.129-135
    • /
    • 2021
  • Recently, additive manufacturing (AM) technology such as powder bed fusion (PBF) and directed energy deposition (DED) are actively attempted as consumers' needs for parts with complex shapes and expensive materials. In the present work, the effect of processing parameters on the mechanical properties of 316L stainless steel coupons fabricated by PBF and DED AM technology was investigated. Three major mechanical tests, including tension, impact, and fatigue, were performed on coupons extracted from the standard components at angles of 0, 45, 90 degrees for the build layers, and compared with those of investment casting and commercial wrought products. Austenitic 316L stainless steel additively manufactured have been well known to be generally stronger but highly vulnerable to impact and lack in elongation compared to casting and wrought materials. The process-induced pore density has been proved the most critical factor in determining the mechanical properties of AM-built metal parts. Therefore, it was strongly recommended to reduce those lack of fusion defects as much as possible by carefully control the energy density of the laser. For example, under the high energy density conditions, PBF-built parts showed 46% higher tensile strength but more than 75% lower impact strength than the wrought products. However, by optimizing the energy density of the laser of the metal AM system, it has been confirmed that it is possible to manufacture metal parts that can satisfy both strength and ductility, and thus it is expected to be actively applied in the field of electric power section soon.

Removal of Inclusions in molten Steel by Filter Dam (필터댐에 의한 강중 개재물 저감효과)

  • 조문규;이석근;정두화;남수희;이재우
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.2
    • /
    • pp.201-207
    • /
    • 1998
  • A tube-type filter dam(or baffle with holes) for ferrous melt refining is applied to the tundish operation for molten steel having low carbon and ultra-low carbon. The changes in the total oxygen content insoluble aluminum content and the distribution of inclusion size in molten steel during tundish operation were in-vestigated at the pouring part strand and mold of tundish. Removal mechanism of inclusions is considered to be caused by buoyancy action of the filter dam better than filtration action and the size range of in-clusions filtrated by the filter dam was for 30-50$\mu\textrm{m}$. Decrease in deviation of inclusion content in molten steel was confirmed for appling the filter dam in comparison with using conventional dam and weir. Also the filter dam had the advantage of baffle with holes at lower part in the efficiency of inclusions removal.

  • PDF

Study on the Microstructure and Mechanical Properties of 17-4PH Stainless Steel Depending on Heat Treatment and Exposure Time (열처리 및 노출시간에 따른 17-4PH 스테인레스강의 미세조직 및 기계적 특성에 관한 연구)

  • Yu, Wi-Do;Lee, Jong-Hun;Im, Yeong-Mok;Yun, Guk-Tae
    • 연구논문집
    • /
    • s.32
    • /
    • pp.77-84
    • /
    • 2002
  • A martensitic precipitation hardening stainless steel, 17-4PH has been widely used in the aircraft, chemical and nuclear industries for long time, owing to the excellent mechanical properties with corrosion resistance that can be achieved by simple heat treatment. The microstructure and mechanical properties of the 17-4PH stainless steel cast parts for aircraft, such as impeller, are largely affected by heat treatment condition. But the database of heat treatment has not been clearly established in the domestic investment casting industries because the domestic aerospace, industry lags behind the advanced countries. In this study, the microstructural evolution and mechanical properties of cast 17-4PH stainless steel depending on the heat treatment conditions and aging at $400^{\circ}C$ were investigated.

  • PDF

Effect of Forging Condition on the Microstructure and Mechanical Properties in Centrifugal Casted Heat Resistant Steel (원심주조된 내열강의 미세조직 및 기계적성질에 미치는 단조 조건의 영향)

  • Kang, C.Y.;Lee, S.M.;Jo, D.H.;Park, Y.T.;Lee, D.H.;Kim, Y.C.
    • Journal of Power System Engineering
    • /
    • v.13 no.3
    • /
    • pp.47-52
    • /
    • 2009
  • The effect of forging start temperature, forging ratio on the microstructure and mechanical properties of B7B4 steel ware investigated. Microstructure of centrifugal casted B7B4 steel consisted of martensite and ferrite phase. The volume fraction of ferrite increased with increase of forging start temperature and decreased with increase of forging ratio. Tensile strength and hardness decreased with higher of forging start temperature, while impact value and elongation increased with higher of forging start temperature. With increase of forging ratio, tensile strength rapidly increased up to the forging ratio of 30%, and then slowly increased, but elongation was decreased. Hardness and impact value rapidly increased with increase of forging ratio.

  • PDF

Cast Defect Quantify on the Simulation for Large Steel Ingots and Its Application (대형잉곳 전산모사 결함 정량화 및 활용연구)

  • NamKung, J.;Kim, Y.C.;Kim, M.C.;Yoon, J.M.;Chae, Y.W.;Lee, D.H.;Oho, S.H.;Kim, N.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.94-97
    • /
    • 2009
  • Cast defect in large steel ingots are estimated in quality and compared each other cast conditions on simulation results by now. The cast defects, micro-crack, shrinkage, pin hole which are predictable in simulation with a reasonable accuracy. In this study, 15 ton steel ingot casting was simulated for solidification model and cast defect prediction. And the real cast was carried out in a foundry for the compeer to the simulation results, the cast defect prediction. Also, the quantity of predicted defect was tried to measuring with the defect mach counting for the various simulated cast conditions. The defect quantity work was used to find the optimized cast condition in DOE(design of experiment) procedure.

  • PDF

The Analysis of Dynamic Pressure in the Molten Flux near the Meniscus during Mold Oscillation for the Continuous Casting of Steel (강의 연속주조시 Mold Oscillation에 따른 Flux층 내의 동적 압력변화 해석)

  • Park, Tae-Ho;Kim, Ji-Hun;Choi, Joo;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.24 no.1
    • /
    • pp.26-33
    • /
    • 2004
  • The pressure of the mold flux acting on the meniscus shell was investigated through the coupling analysis of heat transfer in the mold and fluid flow in the flux caused by the mold oscillation. Finite element method was employed to solve the conservation equation associated with appropriate boundary conditions. As reported by previous workers, the axial pressure is positive on the negative strip time and negative on the positive strip time. A maximum pressure is predicted toward the top of the meniscus shell which has the thin shell arid a maximum value is in proportion to the relative mold oscillation velocity. The relative mold oscillation velocity was changed by the effect of meniscus level fluctuation. Therefore the pressure of the mold flux acting on the meniscus shell was different each cycle of the mold oscillation due to the irregularity of relative mold oscillation velocity.

Effect of Sintering Temperature on the Tensile Properties of Powder Injection Molded PH 17-4 STS (분말사출성형을 통해 제조된 PH 17-4 STS 강의 소결온도에 따른 인장 특성)

  • Sung H. J.;Ha T. K.;Ahn S.;Chang Y. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.305-308
    • /
    • 2001
  • Powder injection molding (PIM) uses the shaping advantage of injection molding but is applicable to metals and ceramics. This process combines a small quantity of polymer with an inorganic powder to form a feedstock that can be molded. After shaping, the polymeric binder is extracted and the powder is sintered often to near-theoretical densities. Accordingly, PIM delivers structural materials in a shaping technology previously restricted to polymers. The process overcomes the shape limitations of traditional powder compaction, the costs of machining, the productivity limits of isostatic pressing and slip casting, and the defect and tolerance limitations of casting. The 17-4 PH stainless steel powders with average diameter of $10{\mu}m$ were injection-molded into flat tensile specimens. Sintering of the compacts was carried out at the various temperatures ranging from 900 to $1350^{\circ}C$. Sintering behavior of the compacts and tensile properties of sintered specimens were investigated.

  • PDF

Effect of Cu on Hot Ductility Behavior of Low Carbon Steel (저탄소강의 열간 연성 거동에 미치는 Cu의 영향)

  • Son, Kwang Suk;Park, Tae Eun;Park, Byung-Ho;Kim, Donggyu
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.4
    • /
    • pp.217-222
    • /
    • 2009
  • Cu as a tramp element has been reported to encourage transverse cracking upon straightening operation during continuous casting or mini-mill processing. Therefore, the hot workability of steels containing Cu should be investigated. The purpose of the present study was to examine the effect of Cu contents on the hot ductility of low carbon steels by using hot compression test. Hot compression test was carried out using a Gleeble. The specimens were heated to $1300^{\circ}C$ for solution treatment and then held for 300s before cooling at a rate of $1^{\circ}C/s$ to test temperatures in the range of $650{\sim}1150^{\circ}C$ ($50^{\circ}C$ intervals) with strain rate of $5{\times}10^{-3}/s$. In Cu containing steels, the hot ductility was decreased with increasing Cu content at high temperature region which is to be attributed to copper enriched phase formed at scale/steel interface, and low hot ductility with increasing Cu content at low temperature region is attributable to the strengthening of matrix by the formation of ${\varepsilon}-Cu$. The width of ductility trough region was decreased with increasing Cu content.