Effect of Cu on Hot Ductility Behavior of Low Carbon Steel

저탄소강의 열간 연성 거동에 미치는 Cu의 영향

  • Son, Kwang Suk (Department of Materials Science and Engineering, Dong-A university) ;
  • Park, Tae Eun (Department of Materials Science and Engineering, Dong-A university) ;
  • Park, Byung-Ho (Department of Materials Science and Engineering, Dong-A university) ;
  • Kim, Donggyu (Department of Materials Science and Engineering, Dong-A university)
  • 손광석 (동아대학교 신소재공학과) ;
  • 박태은 (동아대학교 신소재공학과) ;
  • 박병호 (동아대학교 신소재공학과) ;
  • 김동규 (동아대학교 신소재공학과)
  • Received : 2008.12.22
  • Published : 2009.04.25

Abstract

Cu as a tramp element has been reported to encourage transverse cracking upon straightening operation during continuous casting or mini-mill processing. Therefore, the hot workability of steels containing Cu should be investigated. The purpose of the present study was to examine the effect of Cu contents on the hot ductility of low carbon steels by using hot compression test. Hot compression test was carried out using a Gleeble. The specimens were heated to $1300^{\circ}C$ for solution treatment and then held for 300s before cooling at a rate of $1^{\circ}C/s$ to test temperatures in the range of $650{\sim}1150^{\circ}C$ ($50^{\circ}C$ intervals) with strain rate of $5{\times}10^{-3}/s$. In Cu containing steels, the hot ductility was decreased with increasing Cu content at high temperature region which is to be attributed to copper enriched phase formed at scale/steel interface, and low hot ductility with increasing Cu content at low temperature region is attributable to the strengthening of matrix by the formation of ${\varepsilon}-Cu$. The width of ductility trough region was decreased with increasing Cu content.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. C. Nagasaki and J. Kihara, ISIJ Int. 37, 523 (1997) https://doi.org/10.2355/isijinternational.37.523
  2. S. C. Seo, H. J. Kim, B. H. Park, K. S. Son, S. K. Lee, S. B. Kang, and D. Kim, Metals and Materials Int. 12, 272 (2006)
  3. H. Matsuoka, K. Osawa, M. Ono, and M. Ohmura, ISIJ Int. 37, 255 (1997) https://doi.org/10.2355/isijinternational.37.255
  4. B. Mintz, R. Abushosha, and D. N. Crowther, Mater. Sci. Tech. 11, 474 (1995) https://doi.org/10.1179/026708395790165156
  5. D. A. Melford, J. Iron and Steel Inst. April, 290 (1962)
  6. W. T. Nachtrab and Y. T. Chou, Metall. Trans. 17A, 1995 (1986)
  7. B. Mintz, S. Yue, and J. J. Jonas, Int. Mater. Rev. 36, 187 (1991)
  8. S. C. Seo, K. S. Son, S. K. Lee, I. S. Kim, T. J. Lee, C. H. Yim, and D. Kim, Metals and Materials Int. 14, 559 (2008) https://doi.org/10.3365/met.mat.2008.10.559
  9. J. D. Lee and W. J. Kim, Mater. Sci. Tech. 17, 409 (2001) https://doi.org/10.1179/026708301101510131
  10. K. W. Andrews and D. Sc., J. Iron and Steel Inst. July, 721 (1965)
  11. B. Mintz, J. Lewis, and J. J. Jonas, Mater. Sci. Tech. 13, 379 (1997) https://doi.org/10.1179/026708397790302179
  12. B. Mintz, ISIJ Int. 39, 833 (1999) https://doi.org/10.2355/isijinternational.39.833
  13. B. Mintz and J. J. Jonas, Mater. Sci. Tech. 10, 721 (1994) https://doi.org/10.1179/mst.1994.10.8.721
  14. B. Mintz, J. R. Wilcox, and D. N. Crowther, Mater. Sci. Tech. 2, 589 (1986) https://doi.org/10.1179/026708386790329037
  15. Y. Mehara and Y. Ohmori, Mater. Sci. Eng. 62, 109 (1984) https://doi.org/10.1016/0025-5416(84)90272-6
  16. B. Mintz, R. Abushosha, and A. Cowley, Mater. Sci. Tech. 14, 222 (1998) https://doi.org/10.1179/026708398790301584
  17. A. Cowley, R. Abushosha, and B. Mintz, Mater. Sci. Tech. 14, 1145 (1998) https://doi.org/10.1179/026708398790708899
  18. B. Mintz, Mater. Sci. Tech. 12, 132 (1996) https://doi.org/10.1179/026708396790165605
  19. D. N. Crowther and B. Mintz, Mater. Sci. Tech. 2, 1099 (1986) https://doi.org/10.1179/026708386790328560
  20. D. N. Crowther, Z. Mohamed, and B. Mintz, Trans. Iron Steel Inst. Jpn, 27, 366 (1987) https://doi.org/10.2355/isijinternational1966.27.366
  21. N. Imai, N. Komatsubara, and K. Kunishige, ISIJ Int. 37, 217 (1997) https://doi.org/10.2355/isijinternational.37.217
  22. N. Imai, N. Komatsubara, and K. Kunishige, ISIJ Int. 37, 224 (1997) https://doi.org/10.2355/isijinternational.37.224
  23. D. N. Crowther and B. Mintz, Mater. Sci. Tech. 2, 671 (1986) https://doi.org/10.1179/026708386790329019
  24. B. A. Webler and S. Sridhar, ISIJ Int. 48, 1345 (2008) https://doi.org/10.2355/isijinternational.48.1345
  25. Y. Kimura and S. Takaki, ISIJ Int. 37, 290 (1997) https://doi.org/10.2355/isijinternational.37.290
  26. J. D. Lee and C. H. Yim, J. Kor. Inst. Met. & Mater. 37, 843 (1999)
  27. J. D. Lee and C. H. Yim, J. Kor. Inst. Met. & Mater. 36, 1069 (1998)
  28. Y. Umakoshi and W. Fujitan, ISIJ Int. 38, 888 (1998) https://doi.org/10.2355/isijinternational.38.888