• Title/Summary/Keyword: Steam stripping

Search Result 8, Processing Time 0.022 seconds

Process Design for Recovery of Unreacted Styrene Monomer for Utility Saving (유틸리티 절감을 위한 미반응 스티렌 모노머 회수공정의 설계)

  • Bong, Jooyoung;Na, Sujin;Lee, Kwang soon
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.54-59
    • /
    • 2017
  • A study for process design to curtail the utility consumption during residual styrene monomer recovery in an ABS polymerization process was carried out. Among different techniques for residual monomer recovery, the steam stripping is dominantly employed in industries. The existing process, however, consumes a large amount of utility (steam and cooling water), and this study focused on the design of a new process that can substantially spare the utility consumption. A new process was configured to utilize the latent heat of the stripping steam, which is condensed with the monomer using cooling water after exiting the stripper. The condenser was modified to use vacuum state water as coolant and to generate vacuum state steam using the latent heat of the stripping steam. The steam is injected to the stripper as the stripping steam after upgrading using a compressor. Through this modification, consumption of steam and also cooling water could be significantly reduced at some expense of electricity for compressor operation.

Formation of Furans during the Acid Hydrolysis of Agar and Their Removal by Treatments of Lime, Steam-stripping and Hydrophobic Resins (한천의 산 당화에 의한 Furan화합물의 생성 및 제거)

  • Kim, Na-Hyun;Lee, Jae-Won;Seo, Yung-Bum;Yoon, Min-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.36 no.2
    • /
    • pp.225-232
    • /
    • 2009
  • The ratio of saccharification and formation of furans during the acid hydrolysis of agar with oxalic acid and sulfuric acid were examined base on the contents of the agar and acids. The ratio of saccharification in oxalic acid appeared to be 51~59% somewhat higher than 49~61% of sulfuric acid. Formation of the furans during the acid hydrolysis increased proportional to the contents of agar and acid. The relative formation ratio was high 10~47% for furfural (FUR) and 15~29% for hydroxy-methyl furfural (HMF) in 0.5~1.25% sulfuric acid rather than those of oxalic acid. When comparing the removal efficiency of the furans using an alkali treatment, steam stripping and hydrophobic resins, FUR was eliminated 60% by the alkali treatment, 62~90% by steam stripping and 71~75% by Amberlite XAD4 and 7HP, while HMF was removed to low levels of 10.5%, 4~17% and 13~25%, respectively. The loss of reducing sugar was also observed in process of the removal of furans, and the loss rate was the level of 2~4% in alkali treatment, 11~16% in steam stripping and 7~9% in Amberlite resins.

  • PDF

Effect of Deodorizing Temperature on Physicochemical Characteristics in Corn Oil IV. Effect of Deodorizing Temperature on Volatile Flavor Component Composition in Corn Oil (탈취온도가 옥수수기름의 이화학적 특성에 미치는 영향 제4보, 탈취온도가 옥수수기름의 휘발성 냄새성분 변화에 미치는 영향)

  • 이근보;한명규;이미숙
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.3
    • /
    • pp.272-277
    • /
    • 1998
  • We carried out separation and guantitation of flavor components by GC about essential oils extracted from deodorized corn oil at the different deodorizing temperature. Flavor components were detected total 16 kinds included aldehydes of 8 kinds, major components were propane, pentane, hexanal etc. These major components content was about 70~75% of the total flavor components. According to rise of deodorizing temperature, both ethane and aldehydes of 8 kinds content were in proportion to increase, but propane, pentane, hexane, octan, pentyl furan content were decreased by contraries, respectively. On the other hand, total flavor component content was appeared the lowest level at 245$^{\circ}C$ treating group, aldehydes content was in proportion to increase according to rise of deodorizing temperature. These phenomenons consider that the undesirable reactions such as partial auto-oxidation, degradation, polymerization and hydrolysis etc. by effecting factors of stripping steam and vacuum degree. Conclusively, deodorizing temperature under high temperature was undesirable for the minimization of off-flavor materials.

  • PDF

Relationship between Deodorizing Condition and Production of Trans Fatty Acids in Soybean Oil (대두유의 탈취조건과 trans 지방산 생성의 상관관계)

  • Kim, Duk-Sook;Lee, Keun-Bo
    • Journal of the Korean Society of Food Culture
    • /
    • v.21 no.2
    • /
    • pp.166-170
    • /
    • 2006
  • Soybean oil (SBO) was carried out deodorization at 4 factors as controlled maximum deodorizing temperature (DT), vacuum degree (VD), cycle time (CT) and treating amount of stripping steam (TASS). The results were as follows, acid value (AV), peroxide value (PV) and trans fatty acid content (TFAC) in produced deodorized SBO. Obtained deodorized SBO at high DT had the lower AV, PV, but TFAC was increased relatively. A suitable level of VD and TASS was 4.0 torr and 2.0%(w/w), than the longer CT was appeared a superior quality level. As a result, the best deodorizing conditions in SBO for lower TFAC were maximum DT; $235^{\circ}C$, VD;4.0torr, CT; $14{\sim}15min$ and TASS; 2.0% (w/w). Deodorizing conditions for lower TFAC in deodorizing of SBO was the major factor, more than lower DT was difficult because of the others quality factors.

Effect of Deodorizing Conditions on Color in Soybean Oil (탈취조건이 대두유의 색상에 미치는 영향)

  • Kim, Duk-Sook;Lee, Keun-Bo
    • Journal of the Korean Society of Food Culture
    • /
    • v.20 no.5
    • /
    • pp.627-631
    • /
    • 2005
  • Deodorized soybean oils(DSO) were obtained to 2 types. Sample 1 was carried out a general refining process, which was degumming-alkali refining-bleaching-deodorizing. Sample 2 and 3 were not general refining process, its were carried out only both decantation of insoluble impurities and batch type deodorizing(BTD). At this time, BTD was composed of 3 stages, operating differences were vacuum degree, maximum temperature, stripping steam and retention time etc. DSO obtained were appeared original physicochemical characteristics. Sample 1 had acid value 0.034, Lovibond color, 9.1Y/0.9R, peroxide value 0 and thin yellow color's soybean oil. But sample 2 had acid value, 0.078, Lovibond color, 65.0Y/18.39R/4.2B/0.1N, peroxide value, 0.7 and bright green color's soybean oil. Sample 3 had acid value, 0.072, Lovibond color, 37.3Y/3.8R/0.1B/0.1N, peroxide value 1.6 and dark brown color's soybean oil. These colorful DSO were expects as raw-materials of various seasoning oils as like pine needle and/or perilla leaf seasoning oil.

A study on the Computer-Aided automatic Design of marine water ejector (선박용 수이젝터의 자동설계를 위한 전산프로그램의 개발)

  • 김경근;김용모;김주년;남청도
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.74-84
    • /
    • 1986
  • Ejectors, having no moving, lubricating and leaking parats, are widely used as marine pumps because of its high working confidence. For instance, uses in ships are stripping in crude oil tank, bilge discharge in engine room, ballast water pumping on are carrier, and brine discharge from fresh water generator. And it is also used as cooling water recirculating pump in boiling water type nuclear reactor and deep-well pump. It is not easy to determine the optimal dimension for designing each ejector agreed with its suggested performance condition, because complicated calculations must be repeated to obtain the maximum efficiency affected by flowrate ratio, head ratio, area ratio and so on. Therefore, it is considered that the CAD (Computer-Aided Design) for ejector is a powerful method for design according to the individual design condition. In this paper, a computer program for water ejector design is developed based on the previous paper on theoretical analysis and experimental results for water ejector. And from the theoretical approach, an equation for the working limit and an equation for determing the shape of throat are obtained. The validity of the present computer program is sufficiently confirmed through the comparison of the computed results with the main dimension of the previous manufactured water ejector. This program will be easily developed as the CAD for various kinds of ejectors, including steam ejector.

  • PDF

Analysis of the Influence of Post-Combustion $CO_2$ Capture on the Performance of Fossil Power Plants (후처리를 이용한 $CO_2$ 포집이 화력 발전설비 성능에 미치는 영향 해석)

  • Tak, Sang-Hyun;Kim, Tong-Seop;Chang, Young-Soo;Lee, Dae-Young;Kim, Min-Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.8
    • /
    • pp.545-552
    • /
    • 2010
  • Research and development efforts to reduce $CO_2$ emission are in progress to cope with global warming. $CO_2$ emission from fossil fuel fired power plants is a major greenhouse gas source and the post-combustion $CO_2$ capture is considered as a short or medium term option to reduce $CO_2$ emissions. In this study, the application of the post-combustion $CO_2$ capture system, which is based on chemical absorption and stripping processes, to typical fossil fuel fired power plants was investigated. A coal fired plant and a natural gas fired combined cycle plant were selected. Performance of the MEA-based $CO_2$ capture system combined with power plants was analyzed and overall plant performance including the energy consumption of the $CO_2$ capture process was investigated.

Case Study of Cost Effect Analysis for Toxic Compounds to Developing Effluent Limitation Standards : Focus on 1,4-Dichlorobenzene (수질유해물질 배출허용기준 설정에 따른 배출시설 비용영향 분석사례 연구: 1,4-Dichlorobenzene을 중심으로)

  • Kim, Kyeongjin;Kim, Wongi;Heo, Jin;Kim, Kwangin;Kim, Jaehoon;Kim, Sanghun;Yeom, Icktae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.557-565
    • /
    • 2010
  • Recently, regulations on toxic compounds in aquatic environment have been strengthened in korea due to the increasing public awareness of the water quality. Typically, these regulations include introduction of emerging toxic compounds and stricter effluent limitations for the already regulated compounds. However, too strict regulations may cause excessive burden on the industry. Therefore it is also important to assess the economic impacts when the new effluent limitation guidelines are introduced. The estimation of the additional cost for the wastewater dischargers to meet the new guidelines are based on the selected treatment technology to handle the hazardous substances and the regulatory levels for effluent limitations. To explore the procedures for cost estimation in enforcing new effluent limitations, a case study was performed specially for 1,4-dichlorobenzene. The pollutants of concern are surveyed for different industrial categories and various treatment technologies. For a given pollutant, the general performances of the treatment technologies are surveyed and a representative technology is selected. For a given technology, the capital cost and annual Operation and Maintenance (O&M) cost was calculated. The calculation of baseline costs to operate ordinary treatment technologies is also important. The ratio between the cost for introducing new treatment process and the baseline cost required for conventional technology was used to evaluate the economic impact on the industry. For 1,4-dichlorobenzene, steam stripping and activated carbon processes were selected as the specific treatment technologies. The cost effects to the regulation of the compound were found to be 6.4% and 14.5% increase in capital cost and O&M cost, respectively, at the flow rate over $2,000m^3/d$ for the categories of synthetic resin and other plastics manufacturing industry. For the case of petrochemical basic compounds manufacturing industry, the cost increases were 5.8% and 12.4%, respectively. It was suggested that cost effect analysis to evaluate the economic impacts of new effluent limitations on the industry is crucial to establish more balanced and reasonable effluent limitations to manage the industrial wastewater containing emerging toxic compounds in the wastewater.