• Title/Summary/Keyword: Steam method

Search Result 1,041, Processing Time 0.028 seconds

Development of a Thermal Design Software for the Heat Recovery Steam Generator of Combined Cogeneration Systems (열병합 복합발전시스템용 폐열회수 보일러 열설계 소프트웨어 개발 연구)

  • Kim, T.K.;Oh, S.D.;Kwon, Y.H.;Seo, S.H.;Kim, B.Y.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.726-731
    • /
    • 2001
  • A thermal design software is developed for the heat recovery steam generator(HRSG) of combined cogeneration systems. The heat transfer is calculated by using the element method to account for the varying thermal properties across the heat transfer elements. The circulation balance is computed for the evaporator to accurately estimate the steam generation rate and to check the proper circulation of the boiler water through the tubes. The software developed can be used to simulate HRSG systems with various combinations of auxiliary burner, wall superheater, superheater, reheater, evaporator, and economizer. Systems with several different combinations of the system components are successfully tested. And it is concluded that the developed software can be used for the design of heat recovery steam generators with various combinations of heat transfer components.

  • PDF

The Characteristics of Strength Development and Curing Cycle of the Steam Cured Concrete (증기양생 콘크리트의 양생온도주기와 강도발현 특성)

  • Kim, Kwang-Don;Kim, Choon-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.63-71
    • /
    • 2010
  • This paper is about a research of steam curing which is one of the curing methods for accelerating the early-age strength of pre-cast concrete. With cylinder mold and mock-up specimen, the research was executed to study the best cycle of steam curing temperature through quantifying cycle of steam curing and maximum temperature, while the required strength is developed under the early-age. Moreover, causes and measurements for the high temperature of concrete, which is due to the steam curing, and the crack, which occurs when removing steel form, are stated. Ultimately, the economical method of producing, which satisfies early-age strength development and quality assurance while manufacturing PC structure, is stated.

An Instructional Design for the Converged English-Science Teaching Method using PBL Model in Elementary School (PBL 모형을 적용한 초등학교 영어·과학 융합 수업 모델 설계)

  • Park, In-Hwa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.66-72
    • /
    • 2020
  • In order to cultivate talented people with national economic influence in the rapidly changing 21st- century modern society, STEM(Science Technology Engineering Mathematics) education has been emphasized in advanced countries such as America and England. In South Korea, STEAM(Science Technology Engineering Arts Mathematics) education is emphasized by adding Arts. The objective of STEAM education is to strengthen the interest and motivation of learners, to focus on experience, exploration, experimentation, to solve convergent thinking and real-life problems, rather than cramming method of teaching and memorization. This study identifiesan instructional design for converged English, the world's official language, and science which is found in nearly all disciplines. With the development of the 4th industrial revolution based on the PBL model, learners participate in their lessons voluntarily for problem-solving skills. The instructional design based on the ADDIE model consists of 5 procedures: Analysis, Design, Development, Implementation, and Evaluation. The goal of fostering talented people with national economic influence is also important, and the teacher in education must recognize the importance of STEAM education and an appropriate instructional design should be studied constantly.

A Study on Quantitative Flaw Evaluation of Nuclear Power Plant Steam Generator Tube by Ultrasonic Testing (초음파를 이용한 원자력발전소 증기발생기 전열관의 정략적 결함 평가에 관한 연구)

  • Yoon, Byung-Sik;Kim, Yong-Sik;Lee, Hee-Jong;Lee, Yong-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.1
    • /
    • pp.12-17
    • /
    • 2006
  • A steam generator of nuclear power plant has thousands of thin tubes. These tubes play an important role in maintaining the pressure boundary between the primary and secondary side of nuclear power plant. The steam generator tube is easy to be damaged because of the severe operating conditions such as the high temperature and pressure. Therefore, tremendous efforts are made to assess the structural integrity of the steam generator tubes. The eddy current test is the most popular non-destructive test to assess the integrity of the tubes. However, the eddy current test has the limitation to size the flaw accurately because the eddy current signal behavior depends on the total volume of flaw. This paper shows the possibility that the ultrasonic test method can be applied to detect the flaws in the steam generator tubes and to measure them quantitatively. From the test results, it is expected that if the ultrasonic test is put to practical use in the steam generator tube inspection, the inspection results will be improved.

Experimental Investigation of Steam Plasma Characteristics for High Energy Density Metal Powder Ignition Using Optical Emission Spectroscopy Method (OES 방법을 이용한 고에너지 금속 분말 점화용 스팀 플라즈마 특성에 관한 실험적 고찰)

  • Lee, Sang-Hyup;Ko, Tae-Ho;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.545-550
    • /
    • 2012
  • High Energy density metal powder has high melting point of oxide film. By this, the ignition source that can make a thermal effect of high-temperature during short time is needed to overcome ignition disturbance mechanism by oxide film. So effective ignition does not occurred with hydrocarbon ignitor, $H_2-O_2$ ignitor, high power laser. But steam plasma can be generate about 5000 K temperature field in short order. Because a steam plasma uses steam as the working gas, it is environmental-friendly and economical. Therefore in this study, we analyze steam plasma temperature field and radical species with optical emission spectroscopy method in order to apply steam plasma ignitor to metal combustion system and cloud particle ignition was identified in visual.

  • PDF

A Fault Detection and Diagnosis in a PWR Steam Generator (PWM 증기발생기의 고장검출 및 진단에 관한 연구)

  • Park, Seung-Yub
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.1
    • /
    • pp.120-127
    • /
    • 1991
  • The purpose of this study is to develop a fault detection and diagnosis scheme that can monitor process fault and instrument fault of a steam generator. The suggested scheme consists of a Kalman filter and two bias estimators. Method of detecting process and instrument fault in a steam generator uses the mean test on the residual sequence of Kalman filter, designed for the unfailed system, to make a fault decision. Once a fault is detected, two bias estimators are driven to estimate the fault and to discriminate process fault and instrument fault. In case of process fault, the fault diagnosis of outlet temperature, feed-water heater and main steam control value is considered. In instrument fault, the fault diagnosis of steam genrator's three instruments is considered. Computer simulation tests show that on-line prompt fault detection and diagnosis can be performed very successfully.

  • PDF

Enhancing Enzymatic Digestibility of Miscanthus sinensis using Steam Explosion Coupled with Chemicals

  • Jung, Ji Young;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.218-230
    • /
    • 2016
  • The effect of steam explosion coupled with alkali (1% sodium hydroxide, 1% potassium hydroxide and 15% sodium carbonate) or organosolv solvent (85% methanol, 70% ethanol and dioxane) on the production of sugar, changes in the chemical composition of M. sinensis were evaluated. The steam explosion coupled with 1% potassium hydroxide and dioxane were better as compared with other treatments based on the removals of acid insoluble lignin, and about 89.0% and 85.4%. Enzymatic hydrolysis of steam explosion with 1% potassium hydroxide and dioxane treated M. sinensis, gave a 98.0% and 96.5% of glucose conversion, respectively. These results suggested that pretreatment of M. sinensis with either potassium hydroxide or dioxane could be a promising pretreatment method for glucose production.

Thermal Structural Analysis of Steam Trap Bimetal Valve (스팀 트랩 바이메탈 밸브의 열 구조해석)

  • Kim, Dong Hwan;Kim, Dong Hyun;Ryu, Gyeong Joong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.11
    • /
    • pp.799-805
    • /
    • 2012
  • In this study, structural thermal analyses for steam trap valve considering contact boundary condition have been conducted for high temperature and pressure conditions using nonlinear finite element method. Full steam trap model also including regulator and housing structures is considered in order to accurately simulate the complex valve mechanism and investigate thermal stress levels, and structural behaviors of core structural parts. It is typically shown that the present computational approach can give very useful results for design engineers so that the operating performance and structural safety of the steam trap valve can be verified in the design process.

Anaerobic Fermentation of Woody Biomass Treated by Various Methods

  • Nakamura, Yoshitoshi;Mtui, Godliving
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.3
    • /
    • pp.179-182
    • /
    • 2003
  • Anaerobic fermentation was attempted to produce methane from the wood chip (Eucalyptus globulus). By the pretreatment of the wood chip using hot water with high temperature, NaOH, and steam explosion, the production of methane gas was enhanced. The pretreatment using Steam explosion resulted in more amount of methane gas produced than the treatment using either hot water or 1% (w/w) NaOH with high temperature, and the steam explosion at a steam pressure of 25 atm and a steaming time of 3 min was the most effective for the methane production. The amount of methane gas produced depended on the ratio of weight of Klason lignin, a high molecular weight lignin, in the treated wood chip.

Application of Fuzzy Algorithm with Learning Function to Nuclear Power Plant Steam Generator Level Control

  • Park, Gee-Yong-;Seong, Poong-Hyun;Lee, Jae-Young-
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1054-1057
    • /
    • 1993
  • A direct method of fuzzy inference and a fuzzy algorithm with learning function are applied to the steam generator level control of nuclear power plant. The fuzzy controller by use of direct inference can control the steam generator in the entire range of power level. There is a little long response time of fuzzy direct inference controller at low power level. The rule base of fuzzy controller with learning function is divided into two parts. One part of the rule base is provided to level control of steam generator at low power level (0%∼30% of full power). Response time of steam generator level control at low power level with this rule base is shown generator level control at low power level with this rule base is shown to be shorter than that of fuzzy controller with direct inference.

  • PDF