• 제목/요약/키워드: Steam iron

검색결과 52건 처리시간 0.024초

태양에너지 발전에 관한 연구 (The Electric Generation by Solar Energy)

  • 김근희;양준묵;전성식
    • 태양에너지
    • /
    • 제1권1호
    • /
    • pp.1-11
    • /
    • 1981
  • The electric generation system by solar energy was built which is composed of $10m^2$ reflector, parabolic mirror and the absorbers. The absorber(I) is a single iron pipe and the absorber (II) contains seven small iron pipes. The ratio of the area of the reflectors to that of the absorber is around 99.4-440. The absorber(II) is more efficient in power than (II) by 5.6 percent. The steam power efficiency of the absorber (II) is 25 percent in this experiments and 20 percent efficiency would be expected for 80.000 Kilowatts.

  • PDF

천연가스 기반 스팀 리포밍 수소 생산 시스템 설계를 위한 시스템엔지니어링 접근방법: 철강생산플랜트를 중심으로 (A Systems Engineering Approach to the Design of Steam Reforming H2 Generation System based on Natural Gas: Case of Iron and Steel making Plant)

  • 김준영;홍대근;서석환;서활원
    • 시스템엔지니어링학술지
    • /
    • 제11권1호
    • /
    • pp.81-93
    • /
    • 2015
  • Steam Reforming H2 Generation (SRH2G) System is a chemical process to produce hydrogen through steam reforming of hydrocarbon. Largely speaking, there are two types of materials for the SRH2G: 1) Oil and coal, and 2)Natural Gas such as shale gas. From the perspective of cost, quality (purity), and environmental burden (pollution), the latter is much more desirable than the former. For this reason, research on SRH2G using natural gas is actively carried out, and implemented and operated in the various industry. In this paper, we develop a natural gas based SRH2G system via systems engineering approach. Specifically, we first derived stakeholder requirements, followed by systems requirements and finally system architecture via a tailored SE process for plant (called Plant Systems Engineering (PSE) process) based on ISO/IEC 15288. The developed method was applied to iron and steel plant as a case study. Through the case study, by the SE approach, we were convinced that a successful system satisfying stakeholders' requirements within the given constraints can be developed, verified and validated.

철부식생성물 저감을 위한 고온 pH(t) 상향 연구 (Study on Increasing High Temperature pH(t) to Reduce Iron Corrosion Products)

  • 신동만;허남용;김왕배
    • Corrosion Science and Technology
    • /
    • 제10권5호
    • /
    • pp.175-179
    • /
    • 2011
  • The transportation and deposition of iron corrosion products are important elements that affect both the steam generator (SG) integrity and secondary system in pressurized water reactor (PWR) nuclear power plants. Most of iron corrosion products are generated on carbon steel materials due to flow accelerated corrosion (FAC). The several parameters like water chemistry, temperature, hydrodynamic, and steel composition affect FAC. It is well established that the at-temperature pH of the deaerated water system has a first order effect on the FAC rate of carbon steels through nuclear industry researches. In order to reduce transportation and deposition of iron corrosion products, increasing pH(t) tests were applied on secondary system of A, B units. Increasing pH(t) successfully reduced flow accelerated corrosion. The effect of increasing pH(t) to inhibit FAC was identified through the experiment and pH(t) evaluation in this paper.

발틱운임지수(BDI)와 해상 물동량의 인과성 검정 (Analysis of causality of Baltic Drybulk index (BDI) and maritime trade volume)

  • 배성훈;박근식
    • 무역학회지
    • /
    • 제44권2호
    • /
    • pp.127-141
    • /
    • 2019
  • In this study, the relationship between Baltic Dry Index(BDI) and maritime trade volume in the dry cargo market was verified using the vector autoregressive (VAR) model. Data was analyzed from 1992 to 2018 for iron ore, steam coal, coking coal, grain, and minor bulks of maritime trade volume and BDI. Granger causality analysis showed that the BDI affects the trade volume of coking coal and minor bulks but the trade volume of iron ore, steam coal and grain do not correlate with the BDI freight index. Impulse response analysis showed that the shock of BDI had the greatest impact on coking coal at the two years lag and the impact was negligible at the ten years lag. In addition, the shock of BDI on minor cargoes was strongest at the three years lag, and were negligible at the ten years lag. This study examined the relationship between maritime trade volume and BDI in the dry bulk shipping market in which uncertainty is high. As a result of this study, there is an economic aspect of sustainability that has helped the risk management of shipping companies. In addition, it is significant from an academic point of view that the long-term relationship between the two time series was analyzed through the causality test between variables. However, it is necessary to develop a forecasting model that will help decision makers in maritime markets using more sophisticated methods such as the Bayesian VAR model.

우슬 줄기 부산물을 이용한 아연과 철 이온의 제거효율 향상 (Enhanced Removal Efficiency of Zinc and Iron Ions Using By-Product of Achyanthes Japonica Stem)

  • 최석순;최태령;하정협
    • 공업화학
    • /
    • 제33권1호
    • /
    • pp.90-95
    • /
    • 2022
  • 본 연구에서는 한약재 부산물로서 우슬 줄기를 사용하여 바이오차를 제조하였다. 제조된 바이오차를 수처리 공정에 적용하기 위하여, 수중에 용해된 아연과 철 이온의 흡착 특성을 고찰하였다. 70과 100 mg/L 아연 이온을 제거하고자 2 h 실험이 이루어졌을 때, 각각 32.3과 31.0 mg/g 흡착량을 구할 수 있었다. 위의 실험 결과, 아연 이온의 제거공정에서 우슬 줄기 바이오차는 활성탄소 보다 3배 이상의 흡착량을 나타내었다. 또한, 70과 100 mg/L 철 이온을 처리하고자 2 h 실험이 수행되었을 때, 각각 50.1과 54.3 mg/g의 높은 흡착량을 얻었다. 그리고, 아연과 철 이온의 제거효율을 향상시키고자, 우슬 줄기 바이오차에 수증기 활성화 공정이 이루어졌다. 그 결과, 70과 100 mg/L 아연 이온의 제거효율이 각각 80과 60%로 증가되었다. 또한, 70과 100 mg/L 철 이온의 제거효율은 각각 100과 82%로 향상되었다. 그리고 수증기로 활성화된 우슬 줄기 바이오차는 미처리된 우슬 줄기 바이오차와 비교하였을 때, 비표면적이 37.3배 증가되었으며 총 기공부피와 대세공 기공부피가 각각 28.4, 136배 향상되었다. 따라서 이러한 실험 결과들은 수중에 함유된 아연과 철 이온을 경제적이고 실용적으로 흡착 처리하는 기술에 사용될 수 있을 것이다.

Chemical Equilibrium Modeling for Magnetite-Packed Crevice Chemistry in a Nuclear Steam Generator

  • Bahn, Chi-Bum;Rhee, In-Hyoung;Hwang, Il-Soon;Park, Byung-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권11호
    • /
    • pp.1783-1789
    • /
    • 2005
  • Modeling of a steam generator crevice in a nuclear power system needs to take into account both thermalhydraulic and chemical phenomena. As a first step towards developing a reliable model, a chemical equilibrium model was developed to predict chemical speciation in a magnetite-packed crevice by adopting the “tableau” method. The model was benchmarked with the available experimental data and the maximum deviation did not exceed two orders of magnitude. The developed model was applied to predict the chemical speciation in a magnetite-packed crevice. It was predicted that caustic environment was developed by the concentration of NaOH and the dissolution of magnetite. The model indicated that the dominant aqueous species of iron in the caustic crevice was $FeO_2\;^-$. The increase of electrochemical corrosion potential observed in the experiment was rationalized by the decrease of dissolved hydrogen concentration due to a boiling process. It was predicted that under the deaerated condition magnetite was oxidized to hematite.

Boride 코팅의 내입자침식성평가 (Evaluation of Particle Erosion Resistance for the Boronized Cr/Mo alloy)

  • 이의열;김종하
    • 한국표면공학회지
    • /
    • 제35권6호
    • /
    • pp.371-376
    • /
    • 2002
  • Steam turbine components of power generators are subjected to severe damages from the particle erosion by iron oxides (mainly $Fe_3$$O_4$) which are formed due to the oxidation of boiler tubes, causing high costs for maintaining and repairing. One of the practical ways to minimize the particle erosion is to apply the erosion resistant boride coating on the turbine components which is composed of boride apply. But the evaluation of its performance has not been carried out. A particle erosion tester, which can offer the erosion condition of steam turbine components, was developed to evaluate the performances of the boronized Cr/Mo alloy. The result showed that the boronized Cr/Mo alloy showed superior resistance to particle erosion to the bare Cr/Mo alloy in all test conditions.

HRSG 보일러 튜브 내면 스케일의 특성연구 (A Study on Characteristics of HRSG Boiler Inner Tube Scale)

  • 이승민;민병연;정년호
    • Corrosion Science and Technology
    • /
    • 제11권3호
    • /
    • pp.82-88
    • /
    • 2012
  • The thickness and chemical composition of oxides on heat recovery steam generator tubes of combined cycle power plant were examined in order to evaluate the corrosion of the tubes. Tubes were removed from the plant after actual operations for 21,482, 42,552 and 56,123 hours respectively. Thickness and growth rate of the oxide scale on reheater inner tube (SA213-T22) were very high compared to those other tubes. The oxide scale was about $250{\mu}m$ thick and uniform. The components of the scale were iron oxides. The oxide scale was mixed oxides consisting of magnetite$(Fe_3O_4)$ and hematite$(Fe_2O_3)$. The oxide on inner tube was removed using many kinds of chemicals and it was found that chelating agents were dissolved faster than other chemicals.

폐기물유래 촉매를 이용한 타르 개질에 관한 연구 (Study on Tar Reforming by Using the Catalyst Derived from Wastes)

  • 성호진;남성방;박영수;구재회
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.267-270
    • /
    • 2014
  • Since contaminants of syngas obtained from the biomass gasification are removed, the syngas is clean fuel. In this study a high-efficiency energy production system is developed. The system produces electricity using a waste pressure and feeds a low-pressure steam to Dyeing industrial complex. Also, iron oxide derived from dyeing sludge is utilized as a self-catalyst to reform a tar and reduce a tar emission from gasifier. This system increases the amount of syngas and finally achieves a highly efficient gasification.

  • PDF

Vanadium-Boride코팅의 고온 내입자침식성 평가 (Evaluation of High Temperature Particle Erosion Resistance of Vanadium-Boride Coating)

  • 이의열;김종하;정세일;이선호;엄기원
    • Corrosion Science and Technology
    • /
    • 제14권2호
    • /
    • pp.76-84
    • /
    • 2015
  • The components in ultra super critical (USC) steam turbine, which is under development for high efficient power generation, are encountering harsher solid particle erosion by iron oxide scales than ones in the existing steam turbines. Therefore, the currently used boride coating will not be able to hold effective protection from particle erosion in USC system and should be replaced by new particle erosion resistant coatings. One of the best protective coatings developed for USC steam turbine parts was found to be vanadium-boride (V-boride) coating which has a hardness of about 3000 HV, much higher than that of boride, 1600~2000 HV. In order to evaluate particle erosion resistance of the various coatings such as V-boride, boride and Cr-carbide coatings at high temperature, particle erosion test equipments were designed and manufactured. In addition, erosion particle velocity was simulated using FLUENT software based on semi-implicity method for pressure linked equations revised (SIMPLER). Based on experimental results of this work, the vanadium-boride coating was found to be superior to others and to be a candidate coating to replace the boride coating.