Browse > Article
http://dx.doi.org/10.14478/ace.2021.1111

Enhanced Removal Efficiency of Zinc and Iron Ions Using By-Product of Achyanthes Japonica Stem  

Choi, Suk Soon (Department of Biological and Environmental Engineering, Semyung University)
Choi, Tay Ryeong (Department of Environmental Safety System Engineering, Semyung niversity)
Ha, Jeong Hyub (Department of Integrated Environmental Systems, Pyeongtaek University)
Publication Information
Applied Chemistry for Engineering / v.33, no.1, 2022 , pp. 90-95 More about this Journal
Abstract
In the present work, biochar was prepared using Achyanthes japonica stem as a by-product of herbal medicine. In order to apply the prepared biochar to water treatment process, the adsorption characteristics of zinc and iron ions dissolved in water were investigated. When the experiments were performed for 2 h to remove 70 and 100 mg/L of zinc ions, the adsorption amounts of 32.3 and 31.0 mg/g were obtained, respectively. It was also found that the adsorption amount of Achyanthes japonica stem biochar for the removal process of zinc ion was three times higher than that of the activated carbon. In addition, when the experiments were performed for 2 h to treat 70 and 100 mg/L of iron ions, high adsorption amounts of 50.1 and 54.3 mg/g were achieved, respectively. In order to further enhance the removal efficiency of zinc and iron ions, a steam activation process was performed on the biochar of Achyanthes japonica stem. As a result, the removal efficiencies of 70 and 100 mg/L of zinc ions increased to 80 and 60%, respectively. Also, the removal efficiencies of 70 and 100 mg/L of iron ions were improved to 100 and 82%, respectively. In addition, when the biochar of Achyanthes japonica stem with a steam activation was compared with the untreated biochar of Achyanthes japonica stem, the specific surface area increased 37.3 times, and the total and macroporpous pore volumes were improved by 28.4 and 136 times, respectively. Therefore, the results can be used for economically and practically adsorbing zinc and iron ions contained in water.
Keywords
Achyanthes japonica Stem; Removal of Zinc and Iron; Biosorption;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Ali, I. A. Shah, A. Ahmad, J. Nawab, and H. Huang, Ar/O2 plasma treatment of carbon nanotube membranes for enhanced removal of zinc from water and wastewater: A dynamic sorption-filtration process, Sci. Total Environ., 655, 1270-1278 (2019).   DOI
2 M. Loan, O. M. G. Newman, R. M. G. Cooper, J. B. Farrow, and G. M. Parkinson, Defining the paragoethite process for iron removal in zinc hydrometallurgy, Hydrometallurgy, 81, 104-129 (2006).   DOI
3 H.-S. Cho, S.-W. Kang, J.-H. Kim, M.-J. Choi, H.-W. Yu, E. Park, and H. S. Chun, Antioxidant and antimicrobial activities of combined extracts of Galla rhois, Achyranthes Japonica NaKai, Terminalia Chebula Retz and Glycyrrhiza uralensis, J. Kor. Soi. Biotech. and Bioeng, 29(1), 29-35 (2014).
4 T.-N. Kwon and C. Jeon, Adsorption characteristics of sericite for nickel ions from industrial waste water, J. Ind. Eng. Chem., 19, 68-72 (2013).   DOI
5 Y. H. Kim, J. Y. Park, Y. J. Yoo, and J. W. Kwak, Removal of lesd using xanthated marine brown alga, Undaria pinnatifida, Process Biochem., 34, 647-652 (1999).   DOI
6 H. Li, X. Dong, E. B. D. Silva, L. M. D. Oliveira, Y. Chen, and L. Q. Ma, Mechanisms of metal sorption by biochars: Biochar characteristics and modifications, Chemosphere, 178, 466-478 (2017).   DOI
7 S. S. Choi, Biosorption of copper ions by cycling of Castanea crenata, Appl. Chem. Eng., 25(3), 307-311 (2014).   DOI
8 B. Das, P. Hazarika, G. Saikia, H. Kalita, D. C. Goswami, H. B. Das, S. N. Dube, and R. K. Dutta, Removal of iron from groundwater by ash: A systematic study of a traditional method, J. Hazard. Mater., 141, 834-841 (2007).   DOI
9 H.-S. Shin, C.-H. Lee, Y.-S. Lee, and K.-H. Kang, Removal of heavy metal from aqueous solution by a column packed with peat-humin, J. Kor. Soi. Environ. Eng., 27(5), 535-541 (2005).
10 S. E. Bailey, T. J. Olin, R. M. Bricka, and D. D. Adrian, A review of potentially low-cost sorbent for heavy metals, Water Res,. 33(11), 2469-2479 (1999).   DOI
11 X. Tan, Y. Liu, G. Zeng, X. Wang, X. Hu, Y. Gu, and Z. Yang, Application of biochar for the removal of pollutants from aqueous solutions, Chemosphere, 125, 70-85 (2015).   DOI
12 X. Xu, X. Cao, and L. Zhao, Comparison of rice husk and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: Role of mineral components in biochars, Chemosphere, 92, 955-961 (2013).   DOI
13 H. Lu, W. Zhang, Y. Yang, X. Huang, S. Wang, and R. Qiu, Relative distribution of Pb2+ sorption mechanism by sludge-derived biochar, Water Res., 46, 854-862 (2012).   DOI
14 L. Qian and B. Chen, Dual role of biochars as adsorbents for aluminum: The effects of oxygen-containing organic components and the scattering of silicate particles, Environ. Sci. Technol., 47, 8759-8768 (2013).   DOI
15 A. Bhatnagar and A. K. Minocha, Biosorption optimization of nickel removal from water using Punica granatum peel waste, Colloids Surf. B Biointerfaces, 76, 544-548 (2010).   DOI
16 K.-H. Kim, N.-H. Lee, I.-K. Paik, J.-H. Park, and J.-K. Yang, Characteristics of heavy metal removal from aqueous solution using leather industry by-products, J. Kor. Soi. Environ. Eng., 32(5), 417-426 (2010).
17 A. Dimirkou, Uptake of Zn2+ ions by a fully iron-exchanged clinoptilolite, Case study of heavily contaminated drinking water samples, Water Res., 41, 2763-2773 (2007).   DOI
18 F. Fu and Q. Wang, Removal of heavy metal ions from wastewaters: A review, J. Environ. Manage., 92, 407-418 (2011).   DOI
19 K. Y. Shin, J. Y. Hong, and J. Jang, Heavy metal ion adsorption behavior in nitrogen-doped magnetic carbon nanoparticles: isotherms and kinetic study, J. Hazard. Mater. 190, 36-44 (2011).   DOI
20 A. G. Tekerlekopoulou, S. Pavlou, and D. V. Vayenas, Removal of ammonium, iron and manganese from potable water in biofiltration units: a review, J. Chem. Technol. Biotechnol. 88, 751-773 (2013).   DOI
21 Y. Y. Jang and S. J. Sharkis, A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche, Blood, 110, 3056-3063 (2007).
22 L. shao, H. Li, S. K. Pazhanisamy, A. Meng, Y. Wang, and D. Zhou, Reactive oxygen species and hematopoietic stem cell senescence, Int. J. Hematol., 94, 24-32 (2011).   DOI
23 E. Kstsou, S. Malamis, and K. Haralambous, Examination of zinc uptake in a combined system using sludge, minerals and ultrafiltration membranes, J. Hazard. Mater., 182, 27-38 (2010).   DOI
24 A. B. Jusoh, W. H. Cheng, W. M. Low, and A. Nora'aini, Study on the removal of iron and manganese in groundwater by granular activated carbon, Desalination, 182, 347-353 (2005).   DOI
25 D. Mohan, A. Sarswat, Y. S. Ok, and C. U. J. Pittman, Organic and inorganic contaminants from water with biochar, a renewable, low cost and sustainable adsorbent - A critical review, Bioresour. Technol., 160, 191-202 (2014).   DOI
26 Z. Liu and F.-S. Zhang, Removal of lead from water using bichars from hydrothermal liquefaction of biomass, J. Hazard. Mater., 167, 933-939 (2009).   DOI
27 X. Chen, G. Chen, L. Chen, Y. Chen, J. Lehmann, M. B. Mcbride, and A. G. Hay, Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution, Bioresour. Technol., 102, 8877-8884 (2011).   DOI
28 N. Khatri, S. Tyagi, and D. Rawtani, Recent strategies for the removal of iron from water: A review, J. Water Process Eng., 19, 291-306 (2017).   DOI
29 P. Sarin, V. L. Snoeyink, J. Bebee, K. K. Jim, M. A. Beckett, W. M. Kriven, and J. A. Clement, Iron release from corroded iron pipes in drinking water distribution systems, Water Res., 38, 1259-1269 (2004).   DOI
30 M.-J. Kim, J. H. Choi, T. R. Choi, S. S. Choi, J. H. Ha, and Y.-S. Lee, Enhancement of manganese removal ability from water phase using biochar of Purinus densiflora bark, Appl. Chem. Eng., 31(5). 526-531 (2020).   DOI
31 M. Uchimiya, S. Chang, and K. T. Klasson, Screening biochars for heavy metal retention in soil: Role of oxygen functional group, J. Hazard. Mater., 190, 432-441 (2011).   DOI
32 A. Al-A. Mohammed, Removal of high-level Fe3+ from aqueous solution using natural inorganic materials: bentonite (NB) and quartz (NQ), Desalination, 250, 885-891 (2010).   DOI