• 제목/요약/키워드: Steam Turbine Diagnosis

검색결과 9건 처리시간 0.027초

퍼지추론을 이용한 스팀 터빈 발전기의 진동 진단 시스템 (Vibration Diagnostic System for Steam Turbine Generators Using Fuzzy Interence)

  • 남경모;홍성욱;김성동
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.677-682
    • /
    • 1997
  • Vibration diagnosis of steam turbine generator is essential for safe operation. For a fast few decades, several data base systems for diagnosis of steam turbine generators have been developed and proved useful. However, there still remains a problem in using data base systems such that they require an expert engineer who has a deep insight or knowledg into the system. Moreover,such data base systems can not give any information if the input is not completely fit with data base. This paper presents an effective method for vibration diagnosis of steam turbine generators using fuzzy inference. The proposed method includes also a strategy to overcome the drawback of data base system such that one cannot obtain any information when the input is insufficient or not exact. A computer program is written to realize the entire procedure for the diagnosis. Three realistic problems are dealt with to show the effectiveness of the proposed method.

  • PDF

발전용 증기터빈 열성능 진단에 관한 연구 (A Study on the Diagnosis of Thermal Performance in the Steam Turbine for Generation)

  • 김광홍;홍은기;황광원;장철호;김시문
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3236-3240
    • /
    • 2007
  • This paper describes the results of steam turbine performance tests. The objectives of performance test is to exactly evaluate the degradation(decrease in performance) of the coal-fired steam turbine generator in order to provide plant information to help performance engineers identify problems, improve performance, and make economic decisions about scheduling maintenance and optimizing operation. To achieve these goals, the periodic thermal performance tests have been carried out since the initial operation period, 1997. We made the calculation program and guidelines for the tests and developed the performance index of the turbine cycle on the basis of the ASME PTC. By comparing the performance changes throughout the whole operation period, we confirmed the performance reliabilities of the turbine and its conditions.

  • PDF

스팀터빈 발전기 진동진단 시스템 개발 (Development of a Vibration Diagnostic System for Steam Turbine Generators)

  • 이안성;홍성욱;김호종;이현
    • 소음진동
    • /
    • 제5권4호
    • /
    • pp.543-553
    • /
    • 1995
  • Modern steam turbine generators are being built as a higher power and larger system, experiencing more frequent starts and stops of operation due to a constant change of power demands. Hence, they are inevitably more vulnerable to various vibrations, and more often exposed to the danger of sudden vibration accidents than ever before. Even under the circumstances, in order to secure the system reliability of steampower plants and there by to supply safely the public electricity, it is important to prevent a sudden vibration accident in one hand and even when it happens, to raise an operating efficiency of the plants throught swift and precise treatments in the other. In this study, an interactive vibration diagnostic system has been developed to make the on-site vibration diagnosis of steam turbine generators possible and convenient, utilizing a note-book PC. For this purpose, at first the principal vibration phenomena, such as various unbalance and unstable vibrations as well as rubbing, misalignment, and shaft crack vibrations, have been systematically classified as grouped parameters of vibration frequencies, amplitudes, phases, rotating speeds at the time of accident, and operating conditions or condition changes. A new complex vibration diagnostic table has been constructed from the causal relations between the characteristic parameters and the principal vibration phenomena. Then, the diagnostic system has been developed to screen and issue the corresponding vibration phenomena by assigning to each user-selected combination of characteristic parameters a unique characteristic vector and comparing this vector with a diagnostic vector of each vibration phenomenon based on the constructed diagnostic table. Moreover, the diagnostic system has a logic whose diagnosis may be performed successfully by inputing only some of the corresponding characteristic parameters without having to input all the parameters. The developed diagnostic system has been applied to perform the diagnosis of several real cases of steam turbine vibration accidents. And the results have been quite satisfactory.

  • PDF

Case History for Reduction of Shaft Vibration in a Steam Turbine

  • Kim, In Chul;Kim, Seung Bong;Jung, Jae Won;Kim, Seung Min
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.315-321
    • /
    • 2001
  • The shaft system of turbine is composed of rotating shaft, blades, bearings which support the shaft, packing seal which prevent the leakage of steam, and couplings which connect the shaft. Shaft system component failure, incorrect assemblage or deflection by unexpected forces causes vibration problem. And every turbine has its own characteristics in dynamic response. In this paper we propose the three-bearing supported type rotor which is real equipment and being operated this time as commercial operation. From 1996 it has a high vibration problem and there are many kinds of trial to solve this problem. In resent outage we performed a special diagnosis and carried out appropriate work. We would like to introduce and explain about this case history.

  • PDF

장기사용된 1Cr-0.5Mo 주증기관의 수명평가 (Life Evaluation of Long-time Used 1Cr-0.5Mo Main Steam Pipe)

  • 백수곤;홍성인
    • Journal of Welding and Joining
    • /
    • 제16권1호
    • /
    • pp.70-76
    • /
    • 1998
  • Most fossil power plants and many critical components will be approaching the end of their nominal design life. At the same time, utilities are finding it economically attractive to extend the use of these plants for several more years, Especially Main steam pipe that operated under high temperature and pressure, often under the more severe operating conditions associated with cycling duty, is most important pipe system and critical component in fossil power plant. To extend the viability of older pipe system and to improve the operation and maintenance reliability, some technologies of precise diagnosis and life management have evolved out of the necessity. The purpose of this study is to descrive the related technologies and show the example of one power plants. The purpose of this study is to descrive the related technologies and show the example of one power plants. The stress analysis was done using ANSYS FEM Code. The branch area from main steam to turbine was the high stressed zone. To evaluate the degradation of the pipe material, replica, visual check, magnetic test, hardness test were done at the welding spot. The degradation level of welding point was E/F, so the remaining life of the welded area was about 0-25%.

  • PDF

Fault Diagnosis Method based on Feature Residual Values for Industrial Rotor Machines

  • Kim, Donghwan;Kim, Younhwan;Jung, Joon-Ha;Sohn, Seokman
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제4권2호
    • /
    • pp.89-99
    • /
    • 2018
  • Downtime and malfunction of industrial rotor machines represents a crucial cost burden and productivity loss. Fault diagnosis of this equipment has recently been carried out to detect their fault(s) and cause(s) by using fault classification methods. However, these methods are of limited use in detecting rotor faults because of their hypersensitivity to unexpected and different equipment conditions individually. These limitations tend to affect the accuracy of fault classification since fault-related features calculated from vibration signal are moved to other regions or changed. To improve the limited diagnosis accuracy of existing methods, we propose a new approach for fault diagnosis of rotor machines based on the model generated by supervised learning. Our work is based on feature residual values from vibration signals as fault indices. Our diagnostic model is a robust and flexible process that, once learned from historical data only one time, allows it to apply to different target systems without optimization of algorithms. The performance of the proposed method was evaluated by comparing its results with conventional methods for fault diagnosis of rotor machines. The experimental results show that the proposed method can be used to achieve better fault diagnosis, even when applied to systems with different normal-state signals, scales, and structures, without tuning or the use of a complementary algorithm. The effectiveness of the method was assessed by simulation using various rotor machine models.

APPLICATION OF MONITORING, DIAGNOSIS, AND PROGNOSIS IN THERMAL PERFORMANCE ANALYSIS FOR NUCLEAR POWER PLANTS

  • Kim, Hyeonmin;Na, Man Gyun;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • 제46권6호
    • /
    • pp.737-752
    • /
    • 2014
  • As condition-based maintenance (CBM) has risen as a new trend, there has been an active movement to apply information technology for effective implementation of CBM in power plants. This motivation is widespread in operations and maintenance, including monitoring, diagnosis, prognosis, and decision-making on asset management. Thermal efficiency analysis in nuclear power plants (NPPs) is a longstanding concern being updated with new methodologies in an advanced IT environment. It is also a prominent way to differentiate competitiveness in terms of operations and maintenance costs. Although thermal performance tests implemented using industrial codes and standards can provide officially trustworthy results, they are essentially resource-consuming and maybe even a hind-sighted technique rather than a foresighted one, considering their periodicity. Therefore, if more accurate performance monitoring can be achieved using advanced data analysis techniques, we can expect more optimized operations and maintenance. This paper proposes a framework and describes associated methodologies for in-situ thermal performance analysis, which differs from conventional performance monitoring. The methodologies are effective for monitoring, diagnosis, and prognosis in pursuit of CBM. Our enabling techniques cover the intelligent removal of random and systematic errors, deviation detection between a best condition and a currently measured condition, degradation diagnosis using a structured knowledge base, and prognosis for decision-making about maintenance tasks. We also discuss how our new methods can be incorporated with existing performance tests. We provide guidance and directions for developers and end-users interested in in-situ thermal performance management, particularly in NPPs with large steam turbines.

적외선열화상에 의한 발전용 밸브 누설명가 연구 (A Study on the Leakage Evaluation for Power Plant Valve Using Infrared Thermography Method)

  • 이상국
    • 비파괴검사학회지
    • /
    • 제30권2호
    • /
    • pp.110-115
    • /
    • 2010
  • 발전용 밸브 내부의 누설은 냉각 기능 상실 및 방사선물질 방출 동 안전계통의 성능 저하와 수많은 에너지 손실 등 발전소 운전에 막대한 손상 및 사고를 초래하게 된다. 본 논문은 신뢰성 높은 진단 방법 개발을 위하여 국내 원자력발전소 2차계통의 누설 발생 또는 내부 부품의 손상이 발생할 수 있는 밸브를 대상으로 현장시험 및 모의누설실험시의 적외선열화상 측정 실험을 수행함으로써 단일계측방식의 불확실성을 제거하고 향후 누설진단에 대한 확대 적용을 도모하고자 하였다. 발전소 현장시험 및 밸브 모의누설시험시의 밸브 누설 상태에 따른 적외선열화상 이미지 측정 실험을 통하여, 적외선열화상 측정 방법은 밸브 누설 상태의 과정을 신속하고 정밀하게 측정 가능하며 향후 많은 종류의 밸브 누설진단에 활용함으로써 누설에 따른 막대한 에너지 손실 및 사고 예방의 유용한 기법으로 확대 적용이 가능할 것으로 생각된다.

신경망 알고리즘을 이용한 화력발전 보일러 시스템 시뮬레이터 개발 (Development of Thermal Power Boiler System Simulator Using Neural Network Algorithm)

  • 이정훈
    • 한국시뮬레이션학회논문지
    • /
    • 제29권3호
    • /
    • pp.9-18
    • /
    • 2020
  • 대규모 화력 발전소 제어용 시뮬레이터 개발은 급수/증기 계통, 공기/연소가스 계통, 미분탄 계통 및 터빈/발전기 계통으로 구성되며, 기계적인 터빈/발전기를 제외하고 모든 계통에 대하여 모델링이 가능하다. 현재까지 화력발전의 일부 계통에 대한 신경망 시뮬레이터 개발에 대한 시도는 있었으나 전체 계통에 대한 시뮬레이터 개발은 완성된 적이 없다. 특히 모든 발전사의 핵심 기술 개발중 하나인 오토튜닝은 정확도가 높은 모든 계통에 대한 모델링이 완성되어야 이룰 수 있는 기술이다. 이에 본 논문은 신경망 알고리즘을 이용하여 시스템을 설계할 경우 가장 핵심인 입출력 관계에 대한 변수를 모든 계통에 대하여 정의하였다. 시뮬레이션을 수행한 결과 실제 보일러 계통의 95~99% 이상 정확도를 보임에 따라 본 시뮬레이터에 현장 PID 제어기를 결합할 경우 고장진단이나 오토튜닝에 활용 가능할 것이다.