• Title/Summary/Keyword: Steady-state optimization

Search Result 174, Processing Time 0.036 seconds

Optimal Design using Flow-structure Interaction Analysis Method of Engine Generator Cooling Fan (엔진발전기 냉각팬의 유동-구조 연성해석 기법을 이용한 최적설계)

  • Kim, Seung Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.3
    • /
    • pp.47-53
    • /
    • 2020
  • In this study, the optimization design data was presented by analyzing the performance and durability of the cooling fan by one-way fluid-structure interaction analysis of the cooling fan shape used in the engine generator. For this purpose, a steady-state analysis was performed on the flow field inside the cooling fan, and the durability was analyzed by using the steady-state calculation results as input data for structural analysis. Six types were modeled for fluid analysis by changing the blade and sweep angle of the cooling fan, and the ratio of mass flow rate and torque was best in A type, but B type with relatively large mass flow rate was the best. It was judged to have flow performance. As a result of examining the structural analysis by setting the four blade thickness of the B type selected through the fluid analysis, it was judged that B Type-3 is the most suitable when considering the fatigue safety factor.

An evaluation on in-pile behaviors of SiCf/SiC cladding under normal and accident conditions with updated FROBA-ATF code

  • Chen, Ping;Qiu, Bowen;Li, Yuanming;Wu, Yingwei;Hui, Yongbo;Deng, Yangbin;Zhang, Kun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1236-1249
    • /
    • 2021
  • Although there are still controversial opinions and uncertainty on application of SiCf/SiC composite cladding as next-generation cladding material for its great oxidation resistance in high temperature steam environment and other outstanding advantages, it cannot deny that SiCf/SiC cladding is a potential accident tolerant fuel (ATF) cladding with high research priority and still in the engineering design stage for now. However, considering its disadvantages, such as low irradiated thermal conductivity, ductility that barely not exist, further evaluations of its in-pile behaviors are still necessary. Based on the self-developed code we recently updated, relevant thermohydraulic and mechanical models in FROBA-ATF were applied to simulate the cladding behaviors under normal and accident conditions in this paper. Even through steady-state performance analysis revealed that this kind of cladding material could greatly reduce the oxidation thickness, the thermal performance of UO2-SiC was poor due to its low inpile thermal conductivity and creep rate. Besides, the risk of failure exists when reactor power decreased. With geometry optimization and dopant addition in pellets, the steady-state performance of UO2-SiC was enhanced and the failure risk was reduced. The thermal and mechanical performance of the improved UO2-SiC was further evaluated under Loss of coolant accident (LOCA) and Reactivity Initiated Accident (RIA) conditions. Transient results showed that the optimized ATF had better thermal performance, lower cladding hoop stress, and could provide more coping time under accident conditions.

Thermodynamic simulation and structural optimization of the collimator in the drift duct of EAST-NBI

  • Ning Tang;Chun-dong Hu;Yuan-lai Xie;Jiang-long Wei;Zhi-Wei Cui;Jun-Wei Xie;Zhuo Pan;Yao Jiang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4134-4145
    • /
    • 2022
  • The collimator is one of the high-heat-flux components used to avoid a series of vacuum and thermal problems. In this paper, the heat load distribution throughout the collimator is first calculated through experimental data, and a transient thermodynamic simulation analysis of the original model is carried out. The error of the pipe outlet temperature between the simulated and experimental values is 1.632%, indicating that the simulation result is reliable. Second, the model is optimized to improve the heat transfer performance of the collimator, including the contact mode between the pipe and the flange, the pipe material and the addition of a twisted tape in the pipe. It is concluded that the convective heat transfer coefficient of the optimized model is increased by 15.381% and the maximum wall temperature is reduced by 16.415%; thus, the heat transfer capacity of the optimized model is effectively improved. Third, to adapt the long-pulse steady-state operation of the experimental advanced superconducting Tokamak (EAST) in the future, steady-state simulations of the original and optimized collimators are carried out. The results show that the maximum temperature of the optimized model is reduced by 37.864% compared with that of the original model. The optimized model was changed as little as possible to obtain a better heat exchange structure on the premise of ensuring the consumption of the same mass flow rate of water so that the collimator can adapt to operational environments with higher heat fluxes and long pulses in the future. These research methods also provide a reference for the future design of components under high-energy and long-pulse operational conditions.

Efficiency Optimization Control of SynRM with Hybrid Artificial Intelligent Controller (하이브리드 인공지능 제어기에 의한 SynRM의 효율 최적화 제어)

  • Chung, Dong-Hwa;Choi, Jung-Sik;Ko, Jae-Sub
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.1-9
    • /
    • 2007
  • This paper is proposed an efficiency optimization control algorithm for a synchronous reluctance motor which minimizes the coner and iron losses. The design of the speed controller based on adaptive fuzzy-neural networks(AFNN) controller that is implemented using fuzzy control and neural networks. There exists a variety of combinations of d and q-axis current which provide a specific motor torque. The objective of the efficiency optimization controller is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. The proposed algorithm allows the electromagnetic losses in variable speed and torque drives to be reduced while keeping good torque control dynamics. The control performance of the hybrid artificial intelligent controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm.

Level Set based Shape Optimization Using Extended B-spline Bases (확장 B-스플라인 기저함수를 이용한 레벨셋 기반의 형상 최적설계)

  • Kim, Min-Geun;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.239-245
    • /
    • 2008
  • A level set based topological shape optimization using extended B-spline basis functions is developed for steady-state heat conduction problems. The only inside of complicated domain identified by the level set functions is taken into account in computation, so we can remove the effects of domain outside parts in heat conduction problem. The solution of Hamilton-Jacobi equation leads to an optimal shape according to the normal velocity field determined from the sensitivity analysis, minimizing a thermal compliance while satisfying a volume constraint. To obtain exact shape sensitivity, the precise normal and curvature of geometry need to be determined using the level set and B-spline basis functions. Using topological derivative concept, the nucleation of holes for topological changes can be made whenever and wherever necessary during the optimization.

Efficiency Optimization Control of SynRM with FNPI Controller (FNPI 제어기예 의한 SynRM의 효율 최적화 제어)

  • Kang, Sung-Jun;Ko, Jae-Sub;Choi, Jung-Sik;Jang, Mi-Geum;Back, Jung-Woo;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.29-31
    • /
    • 2009
  • Optimal efficiency control of synchronous reluctance motor(SynRM) is very important in the sense of energy saving and conservation of natural environment because the efficiency of the SynRM is generally lower than that of other types of AC motors. This paper is proposed an efficiency optimization control for the SynRM which minimizes the copper and iron losses. The design of the speed controller based on fuzzy-neural networks (FN)-PI controller that is implemented using fuzzy control and neural networks. There exists a variety of combinations of d and q-axis current which provide a specific motor torque. The objective of the efficiency optimization control is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. It is shown that the current components which directly govern the torque production have been very well regulated by the efficiency optimization control scheme. The proposed algorithm allows the electromagnetic losses In variable speed and torque drives to be reduced while keeping good torque control dynamics. The control performance of the proposed controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm.

  • PDF

Transient Response of The Optimal Taper-Flat Head Slider in Magnetic Storage Devices

  • Arayavongkul, R.;Mongkolwongrojn, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.990-994
    • /
    • 2004
  • This paper presents a method to predict the transient characteristic of the air lubricated slider head in a hard disk drive by using optimization technique. The time dependent modified Reynolds equation based on the molecular slip flow approximation equations was used to describe the fluid flow within the air bearing and the implicit finite difference scheme is applied to calculate the pressure distribution under the slider head. The exhaustive search combined with the Broyden-Fletcher-Goldfarb-Shanno method were employed to obtain optimum design variables which are taper angle, rail width and taper length in order to keep the forces and moments acting on the slider head in dynamic equilibrium. The results show that the optimal head slider of the magnetic head has good stability characteristic that can reach the steady state within 0.5 microsecond.

  • PDF

Optimal Efficiency Control for Induction Motor Drives

  • Kim Sang-uk;Choi Jin-ho;Kim Bo-youl;Kim Young-seok
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.428-433
    • /
    • 2001
  • This paper presents the control algorithm for maximum efficiency drives of an induction motor system with the high dynamic performance. This system uses a simple model of the induction motor that includes equations of iron losses. The model, which only requires the parameters of induction motor, is referred to a field-oriented frame. The minimum point of the input power can be obtained at the steady state condition. The reference torque and flux currents for the vector control of induction motors are calculated by the optimal efficiency control algorithm. The drive system with the proposed efficiency optimization controller has been implemented by a 32 bit floating point TMS320C32 DSP chip. The results show the effectiveness of the control strategy proposed for the induction motor drive.

  • PDF

Optimal strategies for collective Parrondo games (집단 파론도 게임의 최적 전략)

  • Lee, Ji-Yeon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.6
    • /
    • pp.973-982
    • /
    • 2009
  • Two losing games that can be combined, either by periodic alternation or by random mixture, to form a winning game are known as Parrondo games. We consider a collective version of Parrondo games in which players are allowed to choose the game to be played by the whole ensemble in each turn. In this paper, we analyze the long-range optimization strategy for all choices of the parameters and find the expected average profit in the steady state.

  • PDF

Performance Analysis, Real Time Simulation and Control of Medium-Scale Commercial Aircraft Turbofan Engine

  • Kong, Chang-Duk;Jayoung Ki;Chung, Suk-Chou
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.776-787
    • /
    • 2001
  • The turbofan engine performance analysis for a medium scale commercial aircraft was carried out and the LQR control scheme for performance optimization was studied. By using scaled component maps from well-known CF6 engine characteristics, the steady-state performance analysis result was compared with BR715-56 engine performance data. The transient performance analysis was performed with four fuel schedules. The linear simulation was done at the maximum take-off condition. The real time linear simulation was performed by interpolation of the system matrices, which used the least square method as the function of LPC rotational speed. By using linear system matrices of design point, the LQR controller which used control variables for the fuel flow and the LPC bleed air was designed.

  • PDF