• Title/Summary/Keyword: Steady-state calculation

Search Result 205, Processing Time 0.034 seconds

Calculation of Heat Transfer Coefficients by Steady State Inverse Heat Conduction (정상상태의 열전달계수 예측을 위한 최적화기법의 열전도 역문제에 관한 연구)

  • 조종래;배원병;이부윤
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.549-556
    • /
    • 1997
  • The inverse heat conduction problems is the calculation of surface heat transfer coefficients by utilizing measured temperature. The numerical technique of finite element analysis and optimizition is introduced to calculate temperatures and heat transfer coefficients. The calculated heat transfer coefficients and temperature distribution are good agreement with the results of direct analysis. The inverse method has been applied to the control valve of nuclear power plant.

  • PDF

Calculation of Stretched Laminar Diffusion Flame Using the Coherent Flame Sheet Model (코히어런트 화염면 모델을 이용한 스트레치 층류 확산 화염의 수치 계산)

  • 정진은;진영욱
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.17-22
    • /
    • 2000
  • The transient process simplified by the 1-D stretched laminar flame formed at the fuel-oxidizer interface was investigated using the coherent flame sheet model. Under the combustion environment of high temperatures and pressures the results show that the time required to reach the steady state was relatively short compared to the reverse of strain rate. Hence the employment of the tabulation of precalculated steady-flame results in the calculation of turbulent diffusion flames using the coherent flame sheet model is concluded valid, Also upstream temperatures were found to have only a minor effect on the nondimensional flame temperature and nondimensional fuel even through the letter is sensitive to pressure changes.

  • PDF

Static and transient analyses of Advanced Power Reactor 1400 (APR1400) initial core using open-source nodal core simulator KOMODO

  • Alnaqbi, Jwaher;Hartanto, Donny;Alnuaimi, Reem;Imron, Muhammad;Gillette, Victor
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.764-769
    • /
    • 2022
  • The United Arab Emirates is currently building and operating four units of the APR-1400 developed by a South Korean vendor, Korea Electric Power Corporation (KEPCO). This paper attempts to perform APR-1400 reactor core analysis by using the well-known two-step method. The two-step method was applied to the APR-1400 first cycle using the open-source nodal diffusion code, KOMODO. In this study, the group constants were generated using CASMO-4 fuel transport lattice code. The simulation was performed in Hot Zero Power (HZP) at steady-state and transient conditions. Some typical parameters necessary for the Nuclear Design Report (NDR) were evaluated in this paper, such as effective neutron multiplication factor, control rod worth, and critical boron concentration for steady-state analysis. Other parameters such as reactivity insertion, power, and fuel temperature changes during the Reactivity Insertion Accident (RIA) simulation were evaluated as well. The results from KOMODO were verified using PARCS and SIMULATE-3 nodal core simulators. It was found that KOMODO gives an excellent agreement.

Rotordynamic Transient Analysis of Vertical Sea Water Lift Pump for FPSO Deep Well (FPSO 심정용 수직 해수펌프의 로터다이나믹 과도해석)

  • Kim, Byung-Ok;Yang, Sung-Jin;Lee, Myung-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.69-74
    • /
    • 2011
  • This paper deals with the detail rotordynamic analysis for the vertical rotor system as development of vertical sea water lift pump for FPSO deep well. In a vertical rotor system, since linearized stiffness and damping coefficients of fluid film bearing are no longer be valid, hence the transient response analysis considering a fluid film force for every journal position in the bearing needs to be required. In this study, the transient response analysis of the proposed vertical pump rotor system was carried out in dry-run and wet-run conditions, respectively. The results show that orbital vibration responses of the rotor system remain stable at rated speed and thereby operating reliability of the vertical rotor system is confirmed. To overcome complexity of calculation pr ocedure and time consuming calculation of transient analysis, the calculating technique of steady-state response analysis is also proposed. The results of steady-state response obtained by applying the proposed technique to the rotor system are good agreement with the reference results, that is, transient responses.

The Aerodynamic Analysis of Pantograph of the Next Generation High Speed Train (차세대 고속철도 판토그래프의 공력특성 해석)

  • Kang, H.M.;Kim, C.W.;Cho, T.H.;Yoon, S.H.;Kwon, H.B.;Park, C.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.362-367
    • /
    • 2011
  • The aerodynamic performance of the pantograph of the next generation high sped train is analyzed. The calculation of the flow around pantograph is carried cut by FLUENT; by the steady state flow calculation with ${\kappa}-{\omega}$ SST turbulence model, the lift force of the pantograph is computed. For the verification of the numerical schemes am grid systems, flow calculations are performed with the pantograph shape which was used at the experiments performed at Railway Technical Research Institute (RTRI) in Japan. Then, the difference of lift force between numerical am experimental results is about 10%. Therefore, selected numerical schemes and the current grid system is adequate for the analysis am prediction of the aerodynamic performance of panthograph system. Based on these numerical schemes am grid system, the flow around pantograph of the next generation high sped train is calculated and the lift force of the pantograph is predicted; the lift force of the pantograph is about 146N.

  • PDF

Study on hydrodynamic performance of Heavier-than-water AUV with overlapping grid method

  • Li, Xiang;Zhao, Min;Zhao, Faming;Yuan, Qingqing;Ge, Tong
    • Ocean Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-19
    • /
    • 2014
  • Hydrodynamic coefficients strongly affect the dynamic performance of autonomous underwater vehicles (AUVs). A novel kind of underwater vehicle (Heavier-than-water AUV) with higher density than water is presented, which is different from conventional ones. RANS method and overlapping grids are used to simulate the flow field around the vehicle. Lifts, drags and moments of different attack and drift angles in steady state are calculated. The hydrodynamic performances and how the forces change with the attitude are analyzed according to the flow field structure. The steady-state results using overlapping grid method are compared with those of software FLUENT and wind tunnel tests. The calculation results show that the overlapping grid method can well simulate the viscous flow field around the underwater vehicle. Overlapping grid skills have also been used to figure out the planar-motion-mechanism (PMM) problem of Heavier-than-water AUV and forecast its hydrodynamic performance, verifying its effectiveness in dealing with the dynamic problems, which would be quite helpful for design and control of Heavier-than-water AUV and other underwater vehicles.

Kinetics calculation of fast periodic pulsed reactors using MCNP6

  • Zhon, Z.;Gohar, Y.;Talamo, A.;Cao, Y.;Bolshinsky, I.;Pepelyshev, Yu N.;Vinogradov, Alexander
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1051-1059
    • /
    • 2018
  • Fast periodic pulsed reactor is a type of reactor in which the fission bursts are formed entirely with external reactivity modulation with a specified time periodicity. This type of reactors could generate much larger intensity of neutron beams for experimental use, compared with the steady state reactors. In the design of fast periodic pulsed reactors, the time dependent simulation of the power pulse is majorly based on a point kinetic model, which is known to have limitations. A more accurate calculation method is desired for the design analyses of fast periodic pulsed reactors. Monte Carlo computer code MCNP6 is used for this task due to its three dimensional transport capability with a continuous energy library. Some new routines were added to simulate the rotation of the movable reflector parts in the time dependent calculation. Fast periodic pulsed reactor IBR-2M was utilized to validate the new routines. This reactor is periodically in prompt supercritical state, which lasts for ${\sim}400{\mu}s$, during the equilibrium state. This generates long neutron fission chains, which requires tremendously large amount of computation time during Monte Carlo simulations. Russian Roulette was applied for these very long neutron chains in MCNP6 calculation, combined with other approaches to improve the efficiency of the simulations. In the power pulse of the IBR-2M at equilibrium state, there is some discrepancy between the experimental measurements and the calculated results using the point kinetics model. MCNP6 results matches better the experimental measurements, which shows the merit of using MCNP6 calculation relative to the point kinetics model.

A study on the boundary layer characteristics of TP620 hydrofoil in the steady state (정상상태인 박용 TP620 익형의 경계층 특성 연구)

  • 서봉록;김시영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.50-56
    • /
    • 1986
  • This report deals with a study on the boundary layer characteristics of TP620 hydrofoil in the steady state by using two dimensional boundary layer theory. On the basis of complex velocity and laminar and turbulent boundary layer theory, the author attempts to know some tendency by evaluating the performance characteristic values of TP620 hydrofoil working in a uniform flow. In deriving characteristic values, he calculates numerically velocity, momentum thickness, skin friction coefficient, shape factor, and displacement thickness on the TP620 hydrofoil working at each attack angle in a uniform flow. Applying this present numerical calculation using Thwaites' and Head's method, the results of boundary layer on the hydrofoil are shown to be influenced by surface velocity and attack angle.

  • PDF

Numerical Analysis of Ventilation Effectiveness using Turbulent Airflow Modeling (난류유동해석을 통한 환기효율의 수치해석적 연구)

  • Han, H.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.4
    • /
    • pp.253-262
    • /
    • 1992
  • A numerical procedure is introduced to calculate local ventilation effectiveness using the definitions of local decay rate and local mean age. A low Reynolds number $k-{\varepsilon}$ model is implemented to calculate steady state turbulent velocity distributions, and a step-down method is used to calculate transient concentration distributions. Simulations are carried out for several different values of air change rates and several different diffuser angles in a two-dimensional model of a half scale office room. The results show that the local ventilation effectiveness within a room could vary significantly from one location to another. The nominal air change rate based on the assumption of complete mixing of room air does not provide the local ventilation effectiveness information. It is numerically proved that the local mean age distribution obtained from the transient calculation is equivalent to the steady state concentration distribution with homogeneously distributed contaminant sources.

  • PDF

Steady State Analysis of Nozzle Ablation Under High Temperature and High Pressure Arc Plasma (고온ㆍ고압 아크 플라즈마 하에서의 정상상태 노즐용삭 해석 기술)

  • 이병윤;송기동;정진교;박경엽
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.9
    • /
    • pp.395-399
    • /
    • 2003
  • In this paper, physical phenomena which are related to the high temperature and high pressure arc plasma generated during the fault current interruption by SF6 gas circuit breakers are reviewed. In particular, in order to analyze nozzle ablation induced by the heats transferred to the surface of the poly-tetrafluoroethylene(PTFE) nozzle through arc radiation, a governing equation for the calculation of PTFE concentration is added to the governing equations for SF6 arc Plasma analysis. The proposed method is applied to the steady state analysis of $SF_6$ arc plasma generated by direct current taking account of the nozzle ablation and the results are presented.