• Title/Summary/Keyword: Steady-State Response

Search Result 655, Processing Time 0.025 seconds

A New Approach to Direct Torque Control for Induction Motor Drive Using Amplitude and Angle of the Stator Flux Control

  • Kumsuwan, Yuttana;Premrudeepreechacharn, Suttichai;Toliyat, Hamid A.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.79-87
    • /
    • 2008
  • This paper proposes the design and implementation of a direct torque controlled induction motor drive system. The method is based on control of decoupling between amplitude and angle of reference stator flux for determining reference stator voltage vector in generating PWM output voltage for induction motors. The objective is to reduce electromagnetic torque ripple and stator flux droop which result in a decrease in current distortion in steady state condition. In addition, the proposed technique provides simplicity of a control system. The direct torque control is based on the relationship between instantaneous slip angular frequency and rotor angular frequency in adjustment of the reference stator flux angle. The amplitude of the reference stator flux is always kept constant at rated value. Experimental results are illustrated in this paper confirming the capability of the proposed system in regards to such issues as torque and stator flux response, stator phase current distortion both in dynamic and steady state with load variation, and low speed operation.

A study on single phase UPS inverter control with PDFF method (PDFF 제어기법을 이용한 단상 UPS 인버터 전압, 전류제어에 관한 연구)

  • Oh B. W.;Lee S. Y.;Lee Y. K.;Jeon Y. S.;Choe G. H.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.799-802
    • /
    • 2004
  • There are many methods in controlling inverter's voltage and currents. most of all, PI control method is a general method. PI control has some merits. But, PI control has zero effect. So, steady-state response errors always exist by the zero effect. For removing the steady-state error, This paper presents the modeling, design and analysis of the double loop feedback control scheme. and computing the value of parameters and applying In the single-phase full bridge inverter for comparison and analysis between the PI control and PDFF control. The system model is employed to examine the dynamics of power circuit and select appropriate feedback variables for stable operation of the closed-loop UPS inverter system. It analyzes and proves the output characteristic of inverter system with the PDFF control.

  • PDF

Nonlinear Analysis of a Forced Circular Plate with Internal Resonance (내부공진을 가진 원판의 비선형 강제진동해석)

  • 김철홍;이원경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2098-2110
    • /
    • 1992
  • An analysis is presented for the combination resonance of a clamped circular plate, which occurs when the frequency of the excitation is near the combination of the natural frequencies, that is, when ohm.=2.0mega./sub 1/+omega./sub 2/. The internal resonance, Omega./sub 3/=omega./sub 1/+2.omega./sub 2/, is considered and its influence on the response is studied. The clamped circular plate experiencing mid-plane stretching is governed by a nonlinear partial differential equation. By using Galerkin's method the governing equation is reduced to a system of nonautonomous ordinary differential equations. The method of multiple scales is used to obtain steady-state responses of the system. Results of numerical investigations show that the increase of the excitation amplitude can reduce the amplitudes of steady-state responses. We can not find this kind of results in linear systems.

Characteristics of Precise Temperature Control of Industrial Cooler on Thermal Load (산업용 냉각기의 열부하 변화에 대응한 정밀온도제어 특성)

  • Baek, S.M.;Choi, J.H.;Byun, J.Y.;Moon, C.G.;Jeong, S.K.;Yoon, J.I.
    • Journal of Power System Engineering
    • /
    • v.14 no.2
    • /
    • pp.34-39
    • /
    • 2010
  • Recently, technical trend for machine tools is focused on enhancement of speed and accuracy. High speedy processing causes thermal and structural deformation of objects from the machine tools. Water cooler has to be applied to machine tools to reduce the thermal negative influence with accurate temperature controlling system. Existing On-Off control type can't control temperature accurately because compressor is operated and stopped repeatedly and causes increment of power consumption and decrement of the expected life of compressor. The goal of this study is to minimize temperature error in steady state. In addition, control period of an electronic expansion valve were considered to increment of lifetime of the machine tools and quality of product with a water cooler. PI controller is designed using type of hot-gas bypass for precise control of temperature. Gain of PI is decided easily by method of critical oscillation response, excellent performance of control is shown with 4.24% overshoot and ${\pm}0.2^{\circ}C$error of steady state. Also, error range of temperature is controlled within $0.2^{\circ}C$although disturbance occurs.

Analysis of Decoupling Method in DQ Transform-based for Grid Connected Inverter

  • Windarko, Novie Ayub;Lee, Jin-Mok;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.924-925
    • /
    • 2008
  • There are many types of grid-connected inverter controllers, PI controller based is the most popular methods. But, a common PI control is produced zero-steady state error and phase delay in sinusoidal reference. Synchronous reference frame or DQ transform based controller is capable for reducing both of zero-steady state error and phase delay is. But DQ transform based controller has cross-coupling component which difficult to analyze the system in single phase model. In this paper, to obtained single phase model of the system, DQ transform based controller is analyzed in two techniques. The first is by neglecting cross-coupling. The second is eliminated cross-coupling component by decoupling method. By these two techniques, single phase model is obtained. Then, the single phase model is analyzed to evaluate its performance in stability and frequency response, through Root Locus and Bode diagram, respectively. MATLAB and PSIM simulation is used to verify the analysis. Simulation result is shown; cross-coupling component has no significant influent to the controller.

  • PDF

Accurate Voltage Parameter Estimation for Grid Synchronization in Single-Phase Power Systems

  • Dai, Zhiyong;Lin, Hui;Tian, Yanjun;Yao, Wenli;Yin, Hang
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1067-1075
    • /
    • 2016
  • This paper presents an adaptive observer-based approach to estimate voltage parameters, including frequency, amplitude, and phase angle, for single-phase power systems. In contrast to most existing estimation methods of grid voltage parameters, in this study, grid voltage is treated as a dynamic system related to an unknown grid frequency. Based on adaptive observer theory, a full-order adaptive observer is proposed to estimate voltage parameters. A Lyapunov function-based argument is employed to ensure that the proposed estimation method of voltage parameters has zero steady-state error, even when frequency varies or phase angle jumps significantly. Meanwhile, a reduced-order adaptive observer is designed as the simplified version of the proposed full-order observer. Compared with the frequency-adaptive virtual flux estimation, the proposed adaptive observers exhibit better dynamic response to track the actual grid voltage frequency, amplitude, and phase angle. Simulations and experiments have been conducted to validate the effectiveness of the proposed observers.

Analysis of Unsteady Cavitating Flows in Fuel Injection Nozzle of Piezo-driven Injector by Eulerian-Lagrangian Multi-phase Method (Eulerian-Lagrangian 다상 유동해석법에 의한 피에조 인젝터의 노즐 내부 비정상 캐비테이션 유동해석)

  • Lee, Jin-Wook;Min, Kyung-Duk;Kang, Kern-Yong;Gavaises, M.;Arcoumanis, C.
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.38-45
    • /
    • 2004
  • This study describes the analysis results of unsteady cavitating flows behavior inside nozzle of the prototype piezo-driven injector. This piezo-driven injector has been recognised as one of the next generation diesel injector due to a higher driven efficiency than the conventional solenoid-driven injector. The three dimensional geometry model along the central cross-section regarding of one injection hole has been used to simulate the cavitating flows for injection time by at fully transient simulation with cavitation model. The cavitation model incorporates many of the fundamental physical processes assumed to take place in cavitating flows. The simulations performed were both fully transient and 'pseudo' steady state, even if under steady state boundary conditions. We could analyze the effect the pressure drop to the sudden acceleration of fuel, which is due to the fastest response of needle, on the degree of cavitation existed in piezo-driven injector nozzle

  • PDF

Steady-State Solution of Forced Symmetric Piecewise-Linear Oscillator (强制 對稱 偏的 線型 振動子의 定常解)

  • 최연선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.583-594
    • /
    • 1989
  • The strong nonliner dynamic behavior of mechanical systems in the presence of clearances are studied. The nonlinearity is induced from the assumed symmetric piecewise-linear characteristics for stiffness and damping by the contact and uncontact. Based on Stoker's assertion concering the reasoning beyond the occurrence of subharmonics, the nonlinear differential equation is converted to four nonlinear algebraic equations form the boundary conditions at the contact points. For a single contact per half exciting period, under the assumption of symmetric response, the steady-state solutions obtained are in agreement with those of numerical integration. Also a nondimen-sionalized formulation is made for the purpose of parametric studies.

Design and Stability Analysis of a Fuzzy Adaptive SMC System for Three-Phase UPS Inverter

  • Naheem, Khawar;Choi, Young-Sik;Mwasilu, Francis;Choi, Han Ho;Jung, Jin-Woo
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.704-711
    • /
    • 2014
  • This paper proposes a combined fuzzy adaptive sliding-mode voltage controller (FASVC) for a three-phase UPS inverter. The proposed FASVC encapsulates two control terms: a fuzzy adaptive compensation control term, which solves the problem of parameter uncertainties, and a sliding-mode feedback control term, which stabilizes the error dynamics of the system. To extract precise load current information, the proposed method uses a conventional load current observer instead of current sensors. In addition, the stability of the proposed control scheme is fully guaranteed by using the Lyapunov stability theory. It is shown that the proposed FASVC can attain excellent voltage regulation features such as a fast dynamic response, low total harmonic distortion (THD), and a small steady-state error under sudden load disturbances, nonlinear loads, and unbalanced loads in the existence of the parameter uncertainties. Finally, experimental results are obtained from a prototype 1 kVA three-phase UPS inverter system via a TMS320F28335 DSP. A comparison of these results with those obtained from a conventional sliding-mode controller (SMC) confirms the superior transient and steady-state performances of the proposed control technique.

DEVELOPMENT OF A SIMPLE CONTROL ALGORITHM FOR SWIRL MOTOR CONTROLLER

  • Lee, W.T.;Kang, J.J.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.369-375
    • /
    • 2006
  • This paper describes a simple proportional and integral control algorithm for a swirl motor controller and its application. The control algorithm may be complicated in order to have desired performance, such as low steady state errors, fast response time, and relatively low overshoot. At the same time, it should be compact so that it can be easily implemented on a low cost microcontroller, which has no floating-point calculation capability and low computing speed. These conflicting requirements are fulfilled by the proposed control algorithm which consists of a gain scheduling proportional controller and an anti-windup integral controller. The mechanical friction, which is caused by gears and a return spring, varies very nonlinearly according to the angular position of the system. This nonlinear static friction is overcome by the proportional controller, which has a two-dimensional look up gain table. It has error axis and angular position axis. The integral controller is designed not only to minimize the steady state error but also to avoid the windup effect, which may be caused by the saturation of a motor driver. The proposed control algorithm is verified by use of a commercial product to prove the feasibility of the algorithm.