• Title/Summary/Keyword: Steady-State Analysis

Search Result 1,876, Processing Time 0.029 seconds

Probabilistic Security Analysis in Composite Power System Reliability (복합전력계통 신뢰도평가에 있어서 확률론적 안전도연구)

  • Kim, H.;Cha, J.;Kim, J.O.;Kwon, S.
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.46-48
    • /
    • 2005
  • This paper discusses a probabilistic method for power system security assessment. The security analysis relates to the ability of the electric power systems to survive sudden disturbances such as electric short circuits or unanticipated loss of system elements. It consists of both steady state and dynamic security analyses, which are not two separate issues but should be considered together. In steady state security analysis including voltage security analysis, the analysis checks that the system is operated within security limits by OPF (optimal power flow) after the transition to a new operating point. Until now, many utilities have difficulty in including dynamic aspects due to computational capabilities. On the other hand. dynamic security analysis is required to ensure that the transition may lead to an acceptable operating condition. Transient stability, which is the ability of power systems to maintain synchronism when subjected to a large disturbance. is a principal component in dynamic security analysis. Usually any loss of synchronism may cause additional outages and make the present steady state analysis of the post-contingency condition inadequate for unstable cases. This is the reason for the need of dynamic studies in power systems. Probabilistic criterion can be used to recognize the probabilistic nature of system components while considering system security. In this approach. we do not have to assign any predetermined margin of safety. A comprehensive conceptual framework for probabilistic static and dynamic assessment is presented in this paper. The simulation results of the Western System Coordinating Council (WSCC) system compare an analytical method with Monte-Carlo simulation (MCS).

  • PDF

Numerical Analysis of Impurity Transport Along Magnetic Field Lines in Tokamak Scrape-011 Layer

  • Chung, Tae-Kyun;Hong, Sang-Hee
    • Nuclear Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.17-25
    • /
    • 1998
  • Transport of carbon and boron impurity ions parallel to magnetic field lines in the tokamak SOL (scrape-off layer) is numerically investigated for a one-dimensional steady state. The spatial distributions of density and velocity of the impurity ions in a steady state are calculated by finite difference method for a single-fluid model. The calculated results show that among forces acting on SOL particles thermal force produced tv plasma temperature gradient is a principal force determining the feature of impurity distribution profiles in the tokamak edge. However, strong collisional friction forces appearing dominant in front of the diverter plate restrain impurity ion flows due to temperature gradients from moving toward the midplane. Consequently, the stagnation point develops in the impurity flow by these two forces near the diverter region, in which ion flows change their directions. Impurity ions turn out to be accumulated at the stagnation points, where peaked profiles of highly-ionized state ions are relatively predominant over those of low-ionized state ions.

  • PDF

Thermal Analysis of Vehicle Radiator (차량용 라디에이터의 열 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.1
    • /
    • pp.18-23
    • /
    • 2009
  • This study analyzes the thermal stress at automotive radiators on steady and transient states. The maximum displacement is shown at the lower corner of upper tank with the value of 0.51mm. The displacement becomes smaller at the center of radiator and it becomes larger at this edge. The maximum thermal stress with the value of 62 MPa is shown at the contact between upper tank and cooling plate. Thermal maximum stress with the transient state at the elapsed time of 10 second is lower than that at steady state as much as 0.7%.

  • PDF

Analysis of Response of a Wind Farm During Grid/inter-tie Fault Conditions (그리드/연계선 사고 시 풍력발전단지의 응동 분석)

  • Lee, Hye-Won;Kim, Yeon-Hee;Zheng, Tai-Ying;Lee, Sang-Cheol;Kang, Yong-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1128-1133
    • /
    • 2011
  • In a wind farm, a large number of small wind turbine generators (WTGs) operate whilst a small number of a large generator do in a conventional power plant. To maintain high quality and reliability of electrical energy, a wind farm should have equal performance to a thermal power plant in the transient state as well as in the steady state. The wind farm shows similar performance to the conventional power plant in the steady state due to the advanced control technologies. However, it shows quite different characteristics during fault conditions in a grid, which gives significant effects on the operation of a wind farm and the power system stability. This paper presents an analysis of response of a wind farm during grid fault conditions. During fault conditions, each WTG might produce different frequency components in the voltage. The different frequency components result in the non-fundamental frequencies in the voltage and the current of a wind farm, which is called by "beats". This phenomenon requires considerable changes of control technologies of a WTG to improve the characteristics in the transient state such as a fault ride-through requirement of a wind farm. Moreover, it may cause difficulties in protection relays of a wind farm. This paper analyzes the response of a wind farm for various fault conditions using a PSCAD/EMTDC simulator.

A Study on Multi Fault Detection for Turbo Shaft Engine Components of UAV Using Neural Network Algorithms

  • Kong, Chang-Duk;Ki, Ja-Young;Kho, Seong-Hee;Lee, Chang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.187-194
    • /
    • 2008
  • Because the types and severities of most engine faults are various and complex, it is not easy that the conventional model based fault detection approach like the GPA(Gas Path Analysis) method can monitor all engine fault conditions. Therefore this study proposed newly a diagnostic algorithm for isolating and diagnosing effectively the faulted components of the smart UAV propulsion system, which has been developed by KARI(Korea Aerospace Research Institute), using the fuzzy logic and the neural network algorithms. A precise performance model should be needed to perform the model-based diagnostics. The based engine performance model was developed using SIMULINK. For the work and mass flow matching between components of the steady-state simulation, the state-flow library was applied. The proposed steady-state performance model can simulate off-design point performance at various flight conditions and part loads, and in order to evaluate the steady-state performance model their simulation results were compared with manufacturer's performance deck data. According to comparison results, it was confirm that the steady-state model well agreed with the deck data within 3% in all flight envelop. The diagnosis procedure of the proposed diagnostic system has the following steps. Firstly after obtaining database of fault patterns through performance simulation, then secondly the diagnostic system was trained by the FFBP networks. Thirdly after analyzing the trend of the measuring parameters due to fault patterns, then fourthly faulted components were isolated using the fuzzy logic. Finally magnitudes of the detected faults were obtained by the trained neural networks. Because the detected faults have almost same as degradation values of the implanted fault pattern, it was confirmed that the proposed diagnostic system can detect well the engine faults.

  • PDF

Analysis of Temperature Distribution in a Rolling Tire due to Strain Energy Dissipation (회전하는 타이어의 변형에너지 손실에 의한 온도분포 해석)

  • Park, Hyun-Cheol;Youn, Sung-Kie;Song, Tae-Sok;Kim, Nam-Jeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.746-755
    • /
    • 1997
  • This paper addresses the systematic procedure using sequential approach for the analysis of the coupled thermo-mechanical behavior of a steady rolling tire. Not only the knowledge of mechanical stresses but also of the temperature loading in a rolling tire are very important because material damage and material properties are significantly affected by the temperature. In general, the thermo-mechanical behavior of a pneumatic tire is highly complex transient phenomenon that requires the solution of a dynamic nonlinear coupled themoviscoelasticity problem with heat source resulting from internal dissipation and friction. In this paper, a sequential approach, with effective calculation schemes, to modeling this system is presented in order to predict the temperature distribution with reasonable sccuracies in a steady state rolling tire. This approach has the three major analysis modules-deformation, dissipation, and thermal modules. In the dissipation module, an analytic method for the calculation of the heat source in a rolling tire is established using viscoelastic theory. For the verification of the calculated temperature profiles and rolling resistance at different velocities, they were compared with the measured ones.

Analysis of a FB-ZVS PWM DC/DC Converter for Electric Vehicles (전기자동차용 FB-ZVS PWM DC/DC 변환기의 해석)

  • Lee, Dong-Keun;Yoon, Duck-Yong;Hong, Soon-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.461-463
    • /
    • 1996
  • A FB-ZVS(Full Bridge Zero Voltage Switching) PWM DC/DC converter for electric vehicles is analyzed in this paper. The converter considered is a step-down DC/DC converter with the ratings of 3l2/I3.5V and 1.35kW. The steady state analysis of this converter is divided into six operating modes. Digital simulations using PSPICE are carried out to verify the steady-state analysis.

  • PDF

Stochastic Analysis for Vehicle Dynamics using the Monte-Carlo Simulation (Monte-Carlo 시뮬레이션을 이용한 확률적 차량동역학 해석)

  • Tak, Tae-Oh;Joo, Jae-hoon
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.3-12
    • /
    • 2002
  • Monte-Carlo simulation technique has advantages over deterministic simulation in various engineering analysis since Monte-Carlo simulation can take into consideration of scattering of various design variables, which is inherent characteristics of physical world. In this work, Monte-Carlo simulation of steady-state cornering behavior of a truck with design variables like hard points and busing stiffness. The purpose of the simulation is to improve understeer gradient of the truck, which exhibits a small amount of instability when the lateral acceleration is about 0.4g. Through correlation analysis, design variables that have high impacts on the cornering behavior were selected, and significant performance improvement has been achieved by appropriately changing the high impact design variables.

  • PDF

Modeling and Stability Analysis of Automotive HID Lamp Ballast (자동차 헤드라이트용 고압 방전등 안전기 시스템의 모델링 및 안정도 해석)

  • 이인규;최성진;이규찬;조보형
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.411-414
    • /
    • 1999
  • This paper presents design and analysis of an HID lamp ballast for a fast turn on characteristics and stable operation. It produces a high open circuit voltage for the ignition and it is controlled to supply effectively the power required to shorten the warm-up period after the breakdown. The lamp modeling by empirical data is presented. It is very effective in the designing of the control loop in the steady-state operating region. A stable operation of the lamp power regulation in the steady state is achieved, which is crucial for the long life time and constant light output. Stability analysis of the system is performed and the results are verified through various simulation results and the hardware experiments.

  • PDF

Steady State Analysis of Nozzle Ablation Under High Temperature and High Pressure Arc Plasma (고온ㆍ고압 아크 플라즈마 하에서의 정상상태 노즐용삭 해석 기술)

  • 이병윤;송기동;정진교;박경엽
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.9
    • /
    • pp.395-399
    • /
    • 2003
  • In this paper, physical phenomena which are related to the high temperature and high pressure arc plasma generated during the fault current interruption by SF6 gas circuit breakers are reviewed. In particular, in order to analyze nozzle ablation induced by the heats transferred to the surface of the poly-tetrafluoroethylene(PTFE) nozzle through arc radiation, a governing equation for the calculation of PTFE concentration is added to the governing equations for SF6 arc Plasma analysis. The proposed method is applied to the steady state analysis of $SF_6$ arc plasma generated by direct current taking account of the nozzle ablation and the results are presented.