• Title/Summary/Keyword: Steady state method

Search Result 1,772, Processing Time 0.03 seconds

Steady-State Performances Analysis of a Tilting-Pad Gas Bearing (틸팅 패드 기체베어링의 정상상태 성능해석)

  • Kwon, Tae-Kyu
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.2 s.15
    • /
    • pp.43-49
    • /
    • 2002
  • In this paper, the steady-state performances analysis of a tilting pad gas bearing(TPGB) we analyzed by using finite element method for compressible Reynolds' equation. TPGB is used in a high-expansion-ratio expander running at a speed of 230,000 rpm. In order to solve the nonlinear finite element equations, the Newton-Raphson method is applied. The variations of the loading capacity, friction force and tilting angle of a single pad v.s. eccentricity direction of eccentricity and bearing number are investigated. The condition for the equilibrium of a pad, which is important for safe working of the bearing, is stated. The performances of the three pad bearing such as loading capacity, friction moment are predicted.

Steady-state Equilibrium Analysis of a Multibody System Driven by Constant Generalized Speeds (일정 일반속력으로 구동되는 다물체계의 정상상태의 평형해석)

  • Choi, D.H.;Park, J.H.;Yoo, H.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.465-470
    • /
    • 2001
  • This paper presents an algorithm which seeks steady-state equilibrium positions of constrained multibody systems driven by constant generalized speeds. Since the relative coordinates are employed, the constraint equations at cut joints are incorporated into the formulation. The proposed algorithm leads to nonlinear equations that need to be solved iteratively. This algorithm should satisfy both types of conditions: the force equilibrium equations and the kinematic constraint equations. To verify the effectiveness of the proposed algorithm, two numerical examples are solved and the results are compared with those of a commercial program. This method, compared to the conventional method of using dynamic analysis, has the advantage of computational efficiency and stability.

  • PDF

A Matrix Method for the Analysis of Two - Dimensional Markovian Queues

  • Kim, Sung-Shick
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.8 no.2
    • /
    • pp.15-21
    • /
    • 1982
  • This paper offers an alternative to the common probability generating function approach to the solution of steady state equations when a Markovian queue has a multivariate state space. Identifying states and substates and grouping them into vectors appropriately, we formulate a two - dimensional Markovian queue as a Markov chain. Solving the resulting matrix equations the transition point steady state probabilities (SSPs) are obtained. These are then converted into arbitrary time SSPs. The procedure uses only probabilistic arguments and thus avoids a large and cumbersome state space which often poses difficulties in the solution of steady state equations. For the purpose of numerical illustration of the approach we solve a Markovian queue with one server and two classes of customers.

  • PDF

Study on the Transient Phenomenon Simulation of Wind Power Generation System using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 풍력발전시스템의 과도현상 시뮬레이션에 관한 연구)

  • Han, Sang-Geun;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.309-312
    • /
    • 2002
  • For the purpose of more effective simulation of the utility interactive WPGS(Wind Power Generation System) the SWRW (Simulation method for WPGS using Real Weather condition) is used in this paper, in which those of three topics for the WPGS simulation. user-friendly method, applicability to grid-connection and the utilization of the real weather conditions, are satisfied. The simulation of the WPGS using the real weather condition including components modeling of wind turbine system is achieved by introducing the interface method of a non-linear external parameter and FORTRAN using PSCAD/EMTDC. The simulations of steady-state and transient-state are performed effectively by the introduced simulation method. The generator output and current supplied into utility can be obtained by the steady-state simulation, and THD can be achieved by analyzing the results as well. The transient - state of the WPGS can be analyzed by the simulation results of over cut-out wind speed.

  • PDF

Wireless Parallel Operation of High Voltage DC Pourer Supply using Steady-state Estimation (정상상태 판별을 이용한 고전압전원장치의 Wireless 병렬운전)

  • 백주원;유동욱;손호섭;김장목
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.4
    • /
    • pp.255-261
    • /
    • 2004
  • This paper presents an improved droop method which minimizes the voltage droop of a parallel-connected power supply Conventionally, the droop method has been used to achieve a simple structure and no-interconnections among power sources. However, it has a trade-off between output voltage regulation and load sharing accuracy In this paper, the droop is minimized with a current and droop gain control using steady-stage estimation. The proposed method can achieve both good voltage regulation and good load sharing. A design example of two 10㎸, 100㎃ parallel modules is made and tested to verify the proposed current-sharing method.

Steady State Optimal Control of Discrete Weakly Coupled Bilinear Systems

  • Kang, Hyun-Goo;Kim, Beom-Soo;Lim, Myo-Taeg
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.38.6-38
    • /
    • 2001
  • This paper presents a steady state optimal control algorithm for the weakly coupled discrete time bilinearsystems. The optimal solution for the overall system is obtained by solving a sequence of reduced order algebraic Riccati equations with an arbitrary accuracy. The obtained solutions converge to the optimal solutions by using the iteration method. We verify the proposed method by applying it to a real world numerical example.

  • PDF

Steady-State Torque Pulsations in Current Source Inverter Fed Induction Motor Drives (전류원 인버터로 구동되는 유도전동기의 맥동토오)

  • 신휘범;윤명중
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.4
    • /
    • pp.197-204
    • /
    • 1988
  • A simple method that estimates the torque fluctuations in induction motor driven by CSI under steady state condition is presented and that uses the phasor diagram from the modified singlephase equivalent circuit. This method is also applied to evaluate the PWM and programmed do link modulation techniques for reducing the torque pulsations. The simplified calculations are compared with the exact digital solutions from machine D-Q equation. It is noted that the torque pulsations in induction motor driven by CSI are dependent upon the load condition unlike VSI.

  • PDF

Development of Classification Model on SAC Refrigerant Charge Level Using Clustering-based Steady-state Identification (군집화 기반 정상상태 식별을 활용한 시스템 에어컨의 냉매 충전량 분류 모델 개발)

  • Jae-Hee, Kim;Yoojeong, Noh;Jong-Hwan, Jeung;Bong-Soo, Choi;Seok-Hoon, Jang
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.6
    • /
    • pp.357-365
    • /
    • 2022
  • Refrigerant mischarging is one of the most frequently occurring failure modes in air conditioners, and both undercharging and overcharging degrade cooling performance. Therefore, it is important to accurately determine the amount of charged refrigerant. In this study, a support vector machine (SVM) model was developed to multi-classify the refrigerant mischarge through steady-state identification via fuzzy clustering techniques. For steady-state identification, a fuzzy clustering algorithm was applied to the air conditioner operation data using the difference between moving averages. The identification results using the proposed method were compared with those using existing steady-state determination techniques studied through the inversed Fisher's discriminant ratio (IFDR). Subsequently, the main features were selected using minimum redundancy maximum relevance (mRMR) considering the correlation among candidate features, and an SVM multi-classification model was devised using the derived features. The proposed method achieves satisfactory accuracy and robustness from test data collected in the new domain.

Solution of OECD/NEA PWR MOX/UO2 benchmark with a high-performance pin-by-pin core calculation code

  • Hyunsik Hong;Jooil Yoon
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3654-3667
    • /
    • 2024
  • Expanding upon the framework of the steady-state pin-by-pin 2D/1D decoupling method, a novel and highperformance pin-by-pin transient calculation method has been introduced. This transient method, consistent to the steady-state formulation, is designed for time-dependent calculations utilizing a 3D diffusion-based finite difference method (FDM). The inherent complexity of the large 3D problem is effectively managed by decoupling it into a series of planar (2D) and axial (1D) problems. In addition, tens of thousands of pin-cells are grouped into hundreds of boxes to reduce the computing burden for the 1D calculations without essential loss of the accuracy. Two-level coarse mesh finite difference (CMFD) formulation comprising multigroup nodewise CMFD and twogroup assemblywise CMFD is employed as well to accelerate the convergence. Errors originating from the pinlevel homogenization, energy group condensation, and the use of lower order calculation methods are simultaneously corrected by the pinwise super homogenization (SPH) equivalence factor. The transient method is evaluated with OECD/NEA PWR MOX/UO2 benchmark. Code-to-code comparison with the nTRACER direct whole core calculation code yielded highly satisfactory results for the transient scenario as well as the steady-state problems. Furthermore, comparative analyses with conventional nodal calculations show superiority of the pin-by-pin calculation.

Numerical Simulation of Water Table Drawdown due to Groundwater Pumping in a Contaminated Aquifer System at a Shooting Test Site, Pocheon, Korea

  • Kihm, Jung-Hwi;Hwang, Gisub
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.247-257
    • /
    • 2021
  • The study area has been contaminated with explosive materials and heavy metals for several decades. For the design of the pump and treat remediation method, groundwater flow before and during groundwater pumping in a contaminated aquifer system was simulated, calibrated, and predicted using a generalized multidimensional hydrological numerical model. A three-dimensional geologic formation model representing the geology, hydrogeology, and topography of the aquifer system was established. A steady-state numerical simulation with model calibration was performed to obtain initial steady-state spatial distributions of groundwater flow and groundwater table in the aquifer system before groundwater pumping, and its results were illustrated and analyzed. A series of transient-state numerical simulations were then performed during groundwater pumping with the four different pumping rates at a potential location of the pumping well. Its results are illustrated and analyzed to provide primary reference data for the pump and treat remediation method. The results of both steady-state and transient-state numerical simulations show that the spatial distribution and properties of the geologic media and the topography have significant effects on the groundwater flow and thus depression zone.