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Abstract

This paper offers an altemnative to the common probability generating function approach to
the solution of steady state equations when a Markovian queue has a multivariate state spa-
ce. Identifying states and substates and grouping them into vectors appropriately, we form-
ulate a two - dimensional Markovian queue as a Markov chain. Solving the resulting matrix
equations the transition point steady state probabilities (SSPs) are obtained, These are
then converted -into arbitrary time $SPs. The procedure uses only probabilistic arguments
and thus avoids a large and cumbersome state space which often poses difficulties in the solu-
tion of steady state equations. For the purpose of numerical illustration of the approach we

solve a Markovian queue with one server and two classes of customers.,

i. INTRODUCTION

In the analysis of Markovian queues, if the
states of the system are represented by a si-
ngle variable, steady state probabilities (SS-
Ps) are obtained usually directly from stea-
dy state equations without much difficulty.
But for multivariate state queues this is po-
ssible only in a few simple cases. In most
multivariate queues steady state equations
are too complex to be handled without adva-
nced mathematical techniques. The custom-
ery approach is to introduce probability ge-
nerating functions (PGF 's) and to derive a
single function involving a smaller set of un-
knowns or to reduce the original set of equ-
ations into a smaller set of equations in PG-
F's. In the former case solutions are deriv-
ed by appealing to the analytical properties

~ of the function and extending solutions to

the entire set of unknowns. In the latter
case the PGF equations are solved using
matrix methods as well as analytical prope
rties of PGF's . Avi-Itzhak (13, Bhat
and Fischer (2]} and Taylor and Templeton
{13] are good examples of the latter app-
roach., However, there are models for wh-
ich these methods are not applicable, In
such cases either formulating the PGF equ-
ations is not practically possible, or even
with the successfully formulated equations,
the approach leads to highly unstable num-
erical computations.

In this paper, for a two-dimensional Ma-
rkovian queue, we first reduce the number
of steady state equations into a smaller set
and apply a probabilistic matrix method
for its solution. General properties of such

* This work is the first phase of the research program which is sopported by

Ministry of Education.
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matrix solutions in block - partitioned stoc-

hastic matrices have been given by Weuts

(8] (Alsosee (5),(61,(71,(9] for the-

ir related papers) and his results form the

theoretical basis for the method developed
in this paper.

The formulation of the problem discussed
in this paper is quite general and the meth-
od as developed here has the fdlowing adv-
antages over those mentioned earlier
1) Instead of dealing with individual state

- substate combinations, the number of

variables is reduced by grouping all sub-

states that correspond to a state or by
considering the states that have a common
set of substates as a group.

2} The transition probabilities between
and within the groups of states are rep-
resented by matrices and submatrices. To
obtain SSPs of the system we solve
matrix equations which are much simpler
to handle than complex eguations invol-
ving PGF's.

3) The solution techniqgue employs well -
known probabilistic arguments rather
than generating functions and roots of
functional equations.

In queueing systems, some of the facto-
rs that determine the state space are the
numbet of customers in the system, cus-
tomer types and the number of servers.
For this study we shall assume that the
state space consists of states and substa-
tes where states correspond to the mimb.-
er of customers in the system and the su-
hetates are associated with factocs that
depend on the specific states. Thus if
we let J&' be the mt' substate when the
system has n customers, the state space
of the Markovian queue may be written
as ({n, J&), o<o<N, 1= m=k(n)},
where N{ > 1) is the system capacity
and k (n) is the number of all possible
substates when there are n customers in
the system.

The Markovian queues studied in this

— 16—

paper have countably infinite statespace

(i. & N=occ) with changes of state in un-

it steps and the following general charac-

teristics.

1) k(n) is finite for all n and there exists .
an integer U such that, for al] k=1, U+],
------ , JA=Ja and k(n) =k (U}, ie,ifn
is greater than U the substates associat-

- ed with n are identical to the case of U,

2) Let P (n) and Pa; (n) be the one
step transition prebabilities from a state
(n, TP to (n+1, B2y and (n-1,
3271y, respectively ; then P., (n) =P,

(U) and P_, (n) =P__ (U+1) for all n=
U, Utl, -,

3) No substates are associated with n if
n=0. Thus the state of an empty syst-
em is written as 0.

Y. Transition Probability
Matrix and Equilibrium
Condition

In the queueing systems under counsider-
ation. let Xi and Y; denote the number
of customers in the system and the subs-
tate formed by the customers, respective-
ly, after the i** transition (service compl-
etion or new arrival). Clearly the process
(Xi, Y:) is a Markov chain with state sp-
ace {(n,J0), 020 1< m<k(n)}. The
transition probability matrix T of the Mar-
kov chain is of the general form

-0 Ag —
B. 0 A,

where A, :k(n) Xk(n+1) matrix



.Bn tk(n) Xk(n~1) matrix, and M
and W are k(U) xk (U) matri-
ces,

It is easily seen that, by the nature of the
system, T isan irreducible aperiodic stoch-
astic matrix. We denote the SSP of the

state (n, J7 ) as «(n, J2) and 7 (n)=3

) (n,,]g_l ). Also the vector I {n) is defin-

ed as I1(n) = (= (n, 1), vy 7 (0, J2 (0)))
Consider the existence of an invariant pr-
obability vector 1II satisfying
II=0
HT=1I and Ile=1 (2}
where e is the transpose of the vector (L1,
The second equation in (2} may
be written as
H{0)=10(1) B,
H(n-1) Ay _y+1I(a+1)By
l=n<ZU
H{n-1) A, +I{n+1) M,
n=0U
I{n-1) W+ (n+1)M DU
{3)

II{n) =

(ece)
and 3} H{n)e=1.
n=0

Let the matrix D=M+ W : then D is an
irreducible stochastic matirx and there exi-
sts a non-negative k (U) X k{U) matrix
R, which satisfies

R=W+R2M,

sp (R)=1 and dR={d, {4)
where sp (R} denotes the spectral radius
of R and d is the invariant probability vec-
tor of the matrix D, Furthermore, since
every row of the matrix M should have at
least one positive element the matrix R is
irreducible. (For further details see Neuts
(8)). For n> U, we try asolution of the
form = (n)==(U)xn-U, Substituting
this in the equation for n > U in (3) and re-
moving commeon factors vield

M+w=X {3}
showing that X satisfies (4).
Thus for n > U, R satisfies

I(n)=1(U)RR-U
The last equation in (3) now may be rewri.
tten as

U-1 oo
L H(m)e+ L H(U)RB~-Ug=1
n=0 n=1J

For the existence of I (n) >0, n=0,1, 2 -
which satisfy equation(6), the second term
in the LHS of the equation must converge.
It can be easily seen that the convergency
is assured if sp (R) {1,
Theorem ). A Markovian queuelng system
with transition probability matrix (1) reach-
es equilibrium if and enly if

dMe > dWe
Proof. Let §=2Me, then by Theorem 2
of (8], the irreducibility of the matrix D
makes R>0 andsp (R) <1 if and only if
dB>1. Also Theorem 3in (8] assures
that all = (n, 121) are strictly positive. He-
nce the equilibrium condition can be writt-
en as 2dMe> 1. Since this condition is eq-
uivalent to 2dMe> dDe=1, we can write

dMe> dDe- dMe= dWe.

We can consider this theorem as the equi-
librium condition for the discrete two dim-
ensional random walk where one of coordi-
nates has two reflecting barriers while the
other has one. The random walk is in equ-
ilibrium if and only if the total probability
of upward jump (dWe) is smaller than th-
at of downward jump (dWe)

At this point we define the traffic inten-
sity of the system as the following :
Definition 1. The traffic intensity p of the
Markovian queue characterized by the tran-
sition probability matrix (1) is defined as

_dWe )
P=qMe
Clearly, p {1 if and only if dMe> dWe.

Finally, since sp (R} <1, the matrix (I-
R}™ exists. Also by the irreducibility of R,
the matrix (I—K)™! is strictly positive.
Hence we can write

& a)
2 OD(n}=I(U) {I-R)"* (71
n=J
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H. Steady -State Probabilities

If we substitute IT(U+i) by II(U R,
equation {3} becomes
M(0y=H{1)B;
I{n)=Ii(n-1)A, 1+ (n+1}By 1
n<yU
MU =TI{U-1}Ay 1+ 11 {U)RM,
n=U {8)

Iin) =I(U;R*Y 5> U+1
Writing *he first U+ 1 equations of {8) in
matrix {orm, we have

oy, KLy, N, (D)

Byi O JRM
By
= (T{0y, 1i(1), - O{U}] &l

In the above system of equations, since all
states communicate with each other, the ma-
trix is irreducible and Aje + Bye=e, n =0,
----- , U-L Thusif (Bj+RM)e=e then
all row sums of the matrix are is and there-
fore the matrix is an irreducible stachastic
matrix. To see (By+ RM) e =e, we first
multiply both sides of (4) by eto get

Re=We + R*Me.
Substituting We by e-Me, we have

Re= (e-Me) + R% Me,
and this leads to

EMe=e- Me
thus finally we get

Bye+ RMe=Byje+e- Me

=Bge+ We=¢e

Hence the matrix in (9) is indeed an irred-

o0
ucible stochastic matrix. Since 2 I (U}
n=U
{I»[-R)'} when we apply the normalizing co-
ndition
U-1
2 m{nye+II(U} (I-Ryte=1 (10}
n=0 :
to equation (9), the resulting solution I (0},

o), ------ , I{n) is unique and give precise-
Iy the first U+1 SSP vectors of the Markov
chain (X5, Xi}.

These are the state probabilities at trans-
ition epochs. However, in many Markovian
queues, the mean sojourn time at each sta-
te can be different from others. In general,
for a given state (n, J%‘l ), the arbitrary ti-

me SSP q(n, ]?n) is not identical to # (n,

];). Since q (1, J&) 's give more general
information, we give below the complete pr-
ocedure of obtaining these probabilities rat-
her than the n's. We do this by first est-
ablishing relationships between 1I(n) 's
and the arbitrary time SSP vector Q{(n)=q
(n,1),~~qfn, Jg{n)).

Since each row of the matrices M and W
has at least one positive element and M+W
is the stochastic matrix D, all row sums of
the matrix M are positive and strictly less
than 1. This fact gives sp{M) {1 and hen.
ce assures the existance of (I-RM)™' under
equilibrium condition, sp (R} {1. Hence
we are able to write

M{U)=11(U-1) Ay +1I(U) RM

Le,  IH(U)=II(U-1)Ay_{I-RM)"
(11}
Also since R and M are irreducible, (I-RM)
7 is positive. Now assuming that the spe

¢tral radius of the square matrix

Ay -1 (I-RM) 1Bu (1,
we may write

I(U-1)=11{U-2)Ay-o (I-Ay_1(I-

RM)'g;y -1

Hence, in the reverse order, the first U pro-
bability vectors may be written as

(V) =IL(U -1) V4

Hi{n)=U(n-1)V, ,1=0=U-1 (12)
‘where Vy=Ay_1 (I-RM)™ and V,=A, )
(I1-Vp41Bagp)™
n=1,2, - U-1. This relationship is valid
only under the assumption that the spectral
radii of the matrices V1 By (=01, -



U-2) are all less than one and (I-V, 11 B

Bnh41) ™ 's are positive. This assumption,
however, does not hold for general matrix

problems. For example, if sp {I1-RM} 11
and the row sum of the matrices Ayl and

By are closeto 1, then the assumptions are
violated. However, in our problem, this is
not the case. In fact, for the existence of
'S5Ps the assumptions must hold. Otherwise
we may get negative values as SSPs, Now
let V(1)=V, and V(n)= ViV,--Vp, then
from (12) we can represent all the SSP vec-
tors in terms of I[{0) as

H{n)=II(0) V(n) ,1=n=U

I(n)=l(0) V(m)R2-U  72>1,
Since V; is Ixk (1) matrix and V; is a k
(i-1)xk (i) (i=1, ------ , U} matrix, V(o) is
alxk {n) vector

Now we are in a position to calculate the

arbitrary time point SSP vectors. Define
Y, (n=0,1, ---r » U) as the k(n)xk (n) dia-
gonal matrix whose eatry (j,j) is the mean
sojourn time at state (n, Jj“), i=1, 2 - kin),
It is easily seen that, if we let 1 be the cu-
stomers ' overall arrival rate, Y, is the si-
ngle value 1/2. From Theorem 516 of page
104 of Ross (11), the relationship between
0(i) and 1I({) _is given by

Qy=2W Ys  q12- (1)

o0
> I(n) Ye
n=0

co
Now we let a={ ¥ II{n) Y,el? and mul-
n=0
tiply both sides of equation (13) by a and
Y,. This yields
all (n} Y,=all(0} V (n) Y, n<U
all (n) Yy=2I1(0) V(U)RR-Uyy
,a=U (15)
The second equation is possible sine Y=Y,
for n=U+1, -, Noting that Y,= 2 and su-
bstituting for M{n}, n=0,1,2 - from (14)
we get
Q{n) =00 Vin)Y, ,1=ndU

Q(n)=1Q(0) V(U)R-Uyy;

To find Q(0) we need the nanializin: cc id-
tion

o0

2 0{n)e=1

n=
Since the condition is equivalent to

U-1
Q(0) (1+2 L V(n) Yge+ 2
n=0 I

V(R Y yye1=1
we get .

oo
Q(I=(1+2 Z:O Vi{n) Yye+V (U}
(I—R)"nYUe]'l

Other probability vectors are obained using
equation (16) . We note that the probabili-
ty q{n) of n customers in the system, is
simply Q {a)e for n=1, 2, -~

In the course of the numerical implementat-
ion of the procedure developed above to find
Vo (n=1,2 .U} we need inverses of (I-RM)
and (I-Vy, 1By 41) n=0,1,2--U-1, Sin
ce the inverse of each of these matrices can
be represented as an infinite series of real
positive matrices we do not have to deal wi-
th complex values in numerical computations.
Thus this approach is simple and requires
only straightforward numerical caiculations
which can be easily implemented on a comp
uter,

V. Example

For the purpose of illustration of the proc-
edure developed we adopt the M/M/1 syst-
em with two types of customers as an exam-
ple. Readers interested in the application of
the method to more complex systems may re-
fer to (3,4). Even though the system is
ratively simple, if we use the usual meth-
od of probability generating functions as in
{2) and (12), the system provides SSPs
only after complicated mathematical maneu-
vers.
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Consider the M/M/1 system where two
types of customers (typel, 2) arrive in Po-
isson processes with mean rates 2, (typel)
and 2, (type 2). Letg, be the probability
that 2n incomming customer is type i ; then
the overall arrival raie 1 is Zu:X:. Also
we assume the service times to have expon-
ential distributions with mean rates %land

1
o

We difine the states of the system as (n, m),
where n is the number of customers in the
system and m, the type of customer in serv-
ice. Thus the state space is {{n,m), n=0, 1,
2,3 m=L2}, When the states of the syst-
em are defined this way, for each n=1, the
number of substates, k (n) is 2. Moreover,
the transition probabilities P, (1) and P_,
(2) defined earlier are given by

R for customer types 1 and 2 respectively

P:- {1}=[U(20+f‘£‘) )m::m!
, otherwise,

P2 (2)=( =/ (24 pa)) - X
and are the same for n=2,3, -+ L
Thus we have U=1,

W= /(24 m) 0 .
- 0 202+ pg) -
and M= X,u /(e Xapa/(a+ pr) 1
L Xypg Atpg) Kppo/ (A pa

Also, with little effort, we find
As= [Xl.- X,
Bi=[uy/ (2t 1), 2/ (2+ p2]

At this stage, to proceed further, we need
numerical values for the parameters. Let
11=1, A =1, XI =0.3, X.z =0.7, #1=1.5 '
and p;=2 Then i=1,

0.9/5
m=|

21/5 ]
0.6/3 14/3

[1/2.5 0 ]
¢ /3
Thus 29/5 21/5
D=M+W=[ }
0.6/3 2.4/3

and the invariant probability vector d is fo-
und as d={(323, 0.677].
Therefore, dMe =0.8257, dWe = .3397 and
the traffic intensity p=04114, thus the sys-
tem is in equilibrium. To compute the matr-
ix R we use the successive substitutions di-
scussed by Neuts (8], which is given by
the sequence

Ry=W, R, 1 =W+Rj M, for nz 0.
This is a highly efficient method. Other
methods are also found in (6). The sequ-

ence {R,} is monotone increasing and co-
nverges to R. With the method we find

R = L5680 077
=125 .387
Consequently
2,413 . 3107 7
{(I-R)?' = [
0.504 1,6947-
1,185 L4319+
(I-RM)™ =[
and .154 1,369 -
Thus we have

Vi=A ([-EM)!
= {{0,4633, L0816] =V
Utilizing this and the mean sojourn time
matrices ’

_1/2.5 0]
Y,=0 1/3

we get
Q0)=(1+1V({1) (I-R) '=0.4302,
Q(1)=00.797, .155)



5% .77+ Pl
Q (n) =(Q797, .155) [ ]
-125 ,387

1/2.5 0
[ | ot
0 1/3

Furthermore if we let

(e8]
(yy, ¥2l= 2 Q{m)!

n=i
then y, and y; are the unconditional proba-
bilities that the server is occupied by the ty-
pe 1 and the type 2 customers, respectively.
We obtain that

(o8]
(¥, y1= 2 Q{un) I

n=1
=1Q (0} V(1) (I-R)™'Y,
= {.290, 0,283).
Hence the conditional probabilities that the
server is busy by the type 1 and the type 2
customers when the system is busy are 0506
and 0.494, respectively,
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