• Title/Summary/Keyword: Steady state line

Search Result 255, Processing Time 0.026 seconds

Screening of Anti-cancer Compounds Originated from Filamentous Fungi (Monascus sp.) (사상성 곰팡이 (Monascus sp.) 유래 항암 물질의 탐색)

  • Sin, Yeong-Min;Park, Hae-Ryoun;An, Won-Gun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.3
    • /
    • pp.671-676
    • /
    • 2005
  • In this study, we investigated the antioxidant effect of extract from Monascus pillosus, on the human wild-type p53 and p21 expressing A549 lung epithelial cell line and MCF-7 mammary adenocarcinoma cell line stimulated by NO. $P21^{waf/cip1}$ was identified as a gene induced in senescent cells. It is a cyclin-dependent kinase inhibitor and has been shown to cause cell cycle arrest and apoptosis. While p53-regulated stimulation of p21 appears to be central for the permanent growth-arrest, the role of p21 in p53-triggered cell death is unclear. Low dose of sodium nitroprusside (SNP) induced the development of senescence associated with increased expression of p53 and p21 in A549 cells. Inhibition of p21 transactivating activity requires high level correlates with the amount of p53 necessary to cause cell death. Association of p21 and p53 results in inhibition of p21-stimulated transcription. This requires a higher p53 level than is necessary for transcriptional activation of endogenous p53-responsive gene but correlates well with the level of p53 necessary to cause cell death. Exposure to W-1 inhibited oxidative stresses-induced senescence-like arrest, resulting in a significant reduction in p53 and p21 steady state levels. These results suggest that p53 and p21 play a central role in the onset of senescence. Thus, it is important to emphasize control of oxidative balance in tumor prevention and aging.

Role of CH2F2 and N-2 Flow Rates on the Etch Characteristics of Dielectric Hard-mask Layer to Extreme Ultra-violet Resist Pattern in CH2F2/N2/Ar Capacitively Coupled Plasmas

  • Kwon, B.S.;Lee, J.H.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.210-210
    • /
    • 2011
  • The effects of CH2F2 and N2 gas flow rates on the etch selectivity of silicon nitride (Si3N4) layers to extreme ultra-violet (EUV) resist and the variation of the line edge roughness (LER) of the EUV resist and Si3N4 pattern were investigated during etching of a Si3N4/EUV resist structure in dual-frequency superimposed CH2F2/N2/Ar capacitive coupled plasmas (DFS-CCP). The flow rates of CH2F2 and N2 gases played a critical role in determining the process window for ultra-high etch selectivity of Si3N4/EUV resist due to disproportionate changes in the degree of polymerization on the Si3N4 and EUV resist surfaces. Increasing the CH2F2 flow rate resulted in a smaller steady state CHxFy thickness on the Si3N4 and, in turn, enhanced the Si3N4 etch rate due to enhanced SiF4 formation, while a CHxFy layer was deposited on the EUV resist surface protecting the resist under certain N2 flow conditions. The LER values of the etched resist tended to increase at higher CH2F2 flow rates compared to the lower CH2F2 flow rates that resulted from the increased degree of polymerization.

  • PDF

Peroxiredoxin 3 Has Important Roles on Arsenic Trioxide Induced Apoptosis in Human Acute Promyelocytic Leukemia Cell Line via Hyperoxidation of Mitochondrial Specific Reactive Oxygen Species

  • Mun, Yeung-Chul;Ahn, Jee Young;Yoo, Eun Sun;Lee, Kyoung Eun;Nam, Eun Mi;Huh, Jungwon;Woo, Hyun Ae;Rhee, Sue Goo;Seong, Chu Myong
    • Molecules and Cells
    • /
    • v.43 no.9
    • /
    • pp.813-820
    • /
    • 2020
  • NB4 cell, the human acute promyelocytic leukemia (APL) cell line, was treated with various concentrations of arsenic trioxide (ATO) to induce apoptosis, measured by staining with 7-amino-actinomycin D (7-AAD) by flow cytometry. 2', 7'-dichlorodihydro-fluorescein-diacetate (DCF-DA) and MitoSOX™ Red mitochondrial superoxide indicator were used to detect intracellular and mitochondrial reactive oxygen species (ROS). The steady-state level of SO2 (Cysteine sulfinic acid, Cys-SO2H) form for peroxiredoxin 3 (PRX3) was measured by a western blot. To evaluate the effect of sulfiredoxin 1 depletion, NB4 cells were transfected with small interfering RNA and analyzed for their influence on ROS, redox enzymes, and apoptosis. The mitochondrial ROS of NB4 cells significantly increased after ATO treatment. NB4 cell apoptosis after ATO treatment increased in a time-dependent manner. Increased SO2 form and dimeric PRX3 were observed as a hyperoxidation reaction in NB4 cells post-ATO treatment, in concordance with mitochondrial ROS accumulation. Sulfiredoxin 1 expression is downregulated by small interfering RNA transfection, which potentiated mitochondrial ROS generation and cell growth arrest in ATO-treated NB4 cells. Our results indicate that ATO-induced ROS generation in APL cell mitochondria is attributable to PRX3 hyperoxidation as well as dimerized PRX3 accumulation, subsequently triggering apoptosis. The downregulation of sulfiredoxin 1 could amplify apoptosis in ATO-treated APL cells.

Jeju 80kV HVDC Controller Modeling Using PSCAD/EMTDC Program (PSCAD/EMTDC 프로그램을 이용한 제주 80kV HVDC 제어기 모델링)

  • Choi, Soon-Ho;Lee, Seong-Doo;Kim, Chan-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.533-541
    • /
    • 2011
  • This paper studies modeling of Jeju 80kV HVDC system and its controller by using PSCAD/EMTDC program. Reduced ac network is applied to verify interaction between ac network and dc system. Design parameter is applied to the converter transformer, harmonic filter and dc transmisstion line to simulate dc system. HVDC controller is divided into a rectifier controller and a inverter controller according to the converter operating mode. The inverter controller is composed of current control, voltage control and extingtion angle control. The rectifier controller is composed of current control and voltage control. Both controller has VDCOL characteristics so that current order is dependant on voltage variation. Step response, ac network single phase fault, three phase fault is simulated to verify the dynamic performance of controller model in both transient state and steady state.

Differential Roles of Lung Dendritic Cell Subsets Against Respiratory Virus Infection

  • Kim, Tae Hoon;Lee, Heung Kyu
    • IMMUNE NETWORK
    • /
    • v.14 no.3
    • /
    • pp.128-137
    • /
    • 2014
  • Respiratory viruses can induce acute respiratory disease. Clinical symptoms and manifestations are dependent on interactions between the virus and host immune system. Dendritic cells (DCs), along with alveolar macrophages, constitute the first line of sentinel cells in the innate immune response against respiratory viral infection. DCs play an essential role in regulating the immune response by bridging innate and adaptive immunity. In the steady state, lung DCs can be subdivided into $CD103^+$ conventional DCs (cDCs), $CD11b^+$ cDCs, and plasmacytoid DCs (pDCs). In the inflammatory state, like a respiratory viral infection, monocyte-derived DCs (moDCs) are recruited to the lung. In inflammatory lung, discrimination between moDCs and $CD11b^+$ DCs in the inflamed lung has been a critical challenge in understanding their role in the antiviral response. In particular, $CD103^+$ cDCs migrate from the intraepithelial base to the draining mediastinal lymph nodes to primarily induce the $CD8^+$ T cell response against the invading virus. Lymphoid $CD8{\alpha}^+$ cDCs, which have a developmental relationship with $CD103^+$ cDCs, also play an important role in viral antigen presentation. Moreover, pDCs have been reported to promote an antiviral response by inducing type I interferon production rather than adaptive immunity. However, the role of these cells in respiratory infections remains unclear. These different DC subsets have functional specialization against respiratory viral infection. Under certain viral infection, contextually controlling the balance of these specialized DC subsets is important for an effective immune response and maintenance of homeostasis.

A Control Algorithm Suitable for High-speed Response Battery Charging System for Elevator Car (승강기 Car용 고속응성 배터리 충전시스템에 적합한 제어알고리즘)

  • Lee, Jung-Hwan;Hwangbo, Chan;Park, Sung-Jun;Park, Seong-Mi;Ko, Jae-Ha
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.1071-1081
    • /
    • 2022
  • As the demand for high-rise buildings increases, the demand for high-speed elevators is also increasing. In order to make a high-speed elevator, a method is needed to reduce the weight of the elevator's components, which is a constraint on the increase in speed. As a measure to reduce the weight, it is possible to remove the traveling cable for power and signal supply. Since the weight of the traveling cable varies depending on the position of the carriage, it is difficult to compensate the weight using the counter weight. The power supply is a structure in which a brush-rail type power input terminal is installed in the elevator hoistway to receive power in a contact-type manner while the carriage is moving. If a small-capacity ESS is installed in a passenger car, power can be supplied uninterruptedly inside the passenger car. A small-capacity ESS charging system to be applied to such an elevator system is required to perform several functions. First, the passenger Car must be able to charge as much as possible even during high-speed operation. A control algorithm with high responsiveness is required because charging starts and ends repeatedly by the partially installed input power stage. In addition, if the input-side line impedance is large due to the structure of the system and the response characteristic is increased, the stability of the system may be lowered. Accordingly, in this paper, we propose a control algorithm that has a stable steady-state output while having a fast response in a transient state. To verify the proposed control algorithm, simulation was conducted using PSIM, and the performance of the controller was verified by manufacturing a prototype buck conveter charger.

IN VITRO STEM CELL SUPPRESSION OF MACROPHAGE INFLAMMATORY $PROTEIN-1{\alpha}$ (Macrophage Inflammatory $Protein-1{\alpha}$의 조혈간세포(造血幹細胞) 억제 작용에 관한 실험적 연구)

  • Suh, Ki-Hang;Ko, Seung-O;Shin, Hyo-Keun;Kim, Oh-Whan
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.18 no.2
    • /
    • pp.286-297
    • /
    • 1996
  • The proliferation of bone marrow stem cell compartment is thought to be under both positive and negative controls by cytokines and colony stimulation factors. Macrophage inflammatory $protein-1{\alpha}(MIP-1{\alpha})$ has been assessed for its potential to protect hematopoietic stem cells from cytotoxic effects of a cycle-specific antineoplastic agents. We have tested the ability of $MIP-1{\alpha}$ to suppress the proliferation of stem cell line Du.528.101 in variety of active status by using $[^{3}H]-thymidine$ incorporation test. The results were as follows. 1. The effect of $MIP-1{\alpha}$ on steady-state Du.528.101 cell represented the cell growth suppression at the concentration of 10, 50, 100nM of $MIP-1{\alpha}$(P<0.001). 2. $MIP-1{\alpha}$ stimulated the proliferation of Du.528.101 cells previously treated with IL-1 at the concentration of 5, 50nM of $MIP-1{\alpha}$(P<0.01). 3. The suppression effect of MIP-1 on Du.528.101 cells at the concentration of 5, 50nM was shown when cells were treated with $MIP-1{\alpha}$ before activation with $IL-1{\beta}(P<0.01)$. 4. The growth rate of synchronized cells were slower than that of non-synchronized ones, and $MIP-1{\alpha}$ represented the similar suppression effect on both synchronized and non-synchronized cells.

  • PDF

A Study on the High Temperature Creep Crack Growth Properties for Steam Turbine Rotor Steel under Static and Cyclic Loading Condition (화력 발전용 고압 로터강의 정하중 및 변동하중하의 고온 크립 균열전파 특성에 관한 연구)

  • O, Se-Gyu;Jeong, Sun-Eok
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.207-207
    • /
    • 1991
  • The crack length measurements by electrical potential(EP) method for 1% Cr-Mo-V and 12%Cr steel of 0.5T-CT specimen were performed at $500^{\circ}C, 600^{\circ}C 700^{\circ}C$, and an applicability of stress intensity factor($K_I$), net section stress($\sigma_{net}$), $C^*$-ingegral and $C_t$ parameter was studied to measure creep crack growth rate(da/dt) with side groove and without side groove under static and cyclic loading condition. The experimental result could be summarized as follows: 1) Crack measurement by EP method was available and coincided with the Johnson,s analytical equation. 2) da/dt by $K_I$ and $\sigma_{net}$ was not adequate because of the wide scatter band according to load and temperature, but $C^*$-integral, except for transition region, was adequate. 3) $C_t$ parameter showed the best fitted line through total creep region without relating with both temperature and load condition. 4) Under the cyclic loading condition, $C_t$ parameter was proper to extimate da/dt. And it was shown that da/dt for 1% Cr-Mo V steel under the static condition(R=1) was 1.16 times faster than the case under cyclic loading(R=0), and for 12% Cr steel, 1.43 times.

A Study on the High Temperature Creep Crack Growth Properties for Steam Turbine Rotor Steel under Static and Cyclic Loading Condition (화력 발전용 고압 로터강의 정하중 및 변동하중하의 고온 크립 균열전파 특성에 관한 연구)

  • O, Se-Gyu;Jeong, Sun-Eok
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.67-75
    • /
    • 1991
  • The crack length measurements by electrical potential(EP) method for 1% Cr-Mo-V and 12%Cr steel of 0.5T-CT specimen were performed at $500^{\circ}C, 600^{\circ}C 700^{\circ}C$, and an applicability of stress intensity factor($K_I$), net section stress($\sigma_{net}$), $C^*$-ingegral and $C_t$ parameter was studied to measure creep crack growth rate(da/dt) with side groove and without side groove under static and cyclic loading condition. The experimental result could be summarized as follows: 1) Crack measurement by EP method was available and coincided with the Johnson, s analytical equation. 2) da/dt by $K_I$ and $\sigma_{net}$ was not adequate because of the wide scatter band according to load and temperature, but $C^*$-integral, except for transition region, was adequate. 3) $C_t$ parameter showed the best fitted line through total creep region without relating with both temperature and load condition. 4) Under the cyclic loading condition, $C_t$ parameter was proper to extimate da/dt. And it was shown that da/dt for 1% Cr-Mo V steel under the static condition(R=1) was 1.16 times faster than the case under cyclic loading(R=0), and for 12% Cr steel, 1.43 times.

  • PDF

Code Analysis of Effect of PHTS Pump Sealing Leakage during Station Blackout at PHWR Plants (중수로 원전 교류전원 완전상실 사고 시 일차측 열수송 펌프 밀봉 누설 영향에 대한 코드 분석)

  • YU, Seon Oh;CHO, Min Ki;LEE, Kyung Won;BAEK, Kyung Lok
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.11-21
    • /
    • 2020
  • This study aims to develop and advance the evaluation technology for assessing PHWR safety. For this purpose, the complete loss of AC power or station blackout (SBO) was selected as a target accident scenario and the analysis model to evaluate the plant responses was envisioned into the MARS-KS input model. The model includes the main features of the primary heat transport system with a simplified model for the horizontal fuel channels, the secondary heat transport system including the shell side of steam generators, feedwater and main steam line, and moderator system. A steady state condition was achieved successfully by running the present model to check out the stable convergence of the key parameters. Subsequently, through the SBO transient analyses two cases with and without the coolant leakage via the PHTS pumps were simulated and the behaviors of the major parameters were compared. The sensitivity analysis on the amount of the coolant leakage by varying its flow area was also performed to investigate the effect on the system responses. It is expected that the results of the present study will contribute to upgrading the evaluation technology of the detailed thermal hydraulic analysis on the SBO transient of the operating PHWRs.