• Title/Summary/Keyword: Steady state error

Search Result 703, Processing Time 0.025 seconds

Recursive Optimal State and Input Observer for Discrete Time-Variant Systems

  • Park, Youngjin;J.L.Stein
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.113-120
    • /
    • 1999
  • One of the important challenges facing control engineers in developing automated machineryis to be able to monitor the machines using remote sensors. Observrs are often used to reconstruct the machine variables of interest. However, conventional observers are unalbe to observe the machine variables when the machine models, upon which the observers are based, have inputs that cannot be measured. Since this is often the case, the authors previsously developed a steady-state optimal state and input observer for time-invariant systems [1], this paper extends that work to time-variant systems. A recursive observer, similar to a Kalman-Bucy filter, is developed . This optimal observer minimizes the trace of the error variance for discrete , linear , time-variant, stochastic systems with unknown inputs.

  • PDF

Augmentation of Fractional-Order PI Controller with Nonlinear Error-Modulator for Enhancing Robustness of DC-DC Boost Converters

  • Saleem, Omer;Rizwan, Mohsin;Khizar, Ahmad;Ahmad, Muaaz
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.835-845
    • /
    • 2019
  • This paper presents a robust-optimal control strategy to improve the output-voltage error-tracking and control capability of a DC-DC boost converter. The proposed strategy employs an optimized Fractional-order Proportional-Integral (FoPI) controller that serves to eliminate oscillations, overshoots, undershoots and steady-state fluctuations. In order to significantly improve the error convergence-rate during a transient response, the FoPI controller is augmented with a pre-stage nonlinear error-modulator. The modulator combines the variations in the error and error-derivative via the signed-distance method. Then it feeds the aggregated-signal to a smooth sigmoidal control surface constituting an optimized hyperbolic secant function. The error-derivative is evaluated by measuring the output-capacitor current in order to compensate the hysteresis effect rendered by the parasitic impedances. The resulting modulated-signal is fed to the FoPI controller. The fixed controller parameters are meta-heuristically selected via a Particle-Swarm-Optimization (PSO) algorithm. The proposed control scheme exhibits rapid transits with improved damping in its response which aids in efficiently rejecting external disturbances such as load-transients and input-fluctuations. The superior robustness and time-optimality of the proposed control strategy is validated via experimental results.

Adaptive High Precision Control of Lime-of Sight Stabilization System (시선 안정화 시스템의 고 정밀 적응제어)

  • Jeon, Byeong-Gyun;Jeon, Gi-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.1
    • /
    • pp.1155-1161
    • /
    • 2001
  • We propose an adaptive nonlinear control algorithm for high precision tracking and stabilization of LOS(Line-of-Sight). The friction parameters of the LOS gimbal are estimated by off-line evolutionary strategy and the friction is compensated by estimated friction compensator. Especially, as the nonlinear control input in a small tracking error zone is enlarged by the nonlinear function, the steady state error is significantly reduced. The proposed algorithm is a direct adaptive control method based on the Lyapunov stability theory, and its convergence is guaranteed under the limited modeling error or torque disturbance. The performance of the pro-posed algorithm is verified by computer simulation on the LOS gimbal model of a moving vehicle.

  • PDF

A PI-Type Fuzzy Controller Having Fuzzy Resetting Capability (퍼지 리셋기능을 갖는 PI형 퍼지제어기)

  • 이지홍;최창현;장점환
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.12
    • /
    • pp.87-97
    • /
    • 1993
  • To improve the limitation of fuzzy PI controller when is applied to systems of order higher than one, a fuzzy PI controller that fuzzily resets or amplifies the accumulated control input according to fuzzy rules defined on (error, change of error) space is proposed. The proposed controller structure was motivated by the characteristics of fuzzy PI controller that it generally gives unevitable large overshoot in trial of reducing rise time of response especially when a system of order higher than one is considered. Based on the observation that the undesirable characteristics of the fuzzy PI controller is caused by integrating control input excessively, even though the integrator is introduced to overcome steady state error, we propose a controller that clear out or doubles integrated control input in a fuzzy manner according to the situation to reduce rise time as well as overshoot. To show the usefulness of the proposed controller, it is applied to the systems that are difficult to stabilize or difficult to get satisfactory response by conventional fuzzy PI controllers.

  • PDF

A Robust Speed Control of SR Motor Using Error.Feedback Nonlinear Compensator (오차.되먹임 비선형 보상기를 이용한 SR 모터의 견실한 속도 제어)

  • Lee, Tae-Gyoo;Huh, Uk-Youl
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.318-323
    • /
    • 1996
  • The speed of SR(Switched Reluctance) motor can be controlled by switching angle. However, since the relation between speed and switching is nonlinear, it is difficult for simple adjustment schemes to achieve the desired performances. In this paper, an error.feedback nonlinear compensator with robustness is proposed for improving the performances of the switching angle controlled SR motor. The proposed controller consists of integral type control and relay type control. The integral type controller which operates regulation, is derived by the steady.state I/O(input/output) map and the relay type controller which works tracking, is designed by Lyapunov stability theory. The validities of the proposed controller are confirmed with the experimental results.

  • PDF

HAI Control for Speed Control of SPMSM Drive (SPMSM 드라이브의 속도제어를 위한 HAI 제어)

  • Lee, Hong-Gyun;Lee, Jung-Chul;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.1
    • /
    • pp.8-14
    • /
    • 2005
  • This paper is proposed hybrid artificial intelligent(HAI) controller for speed control of surface permanent magnet synchronous motor(SPMSM) drive. The design of this algorithm based on HAI controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the HAI controller is evaluated by analysis for various operating conditions. The results of analysis prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

Adaptive FNN Controller for High Performance Control of Induction Motor Drive (유도전동기 드라이브의 고성능 제어를 위한 적응 FNN 제어기)

  • 이정철;이홍균;정동화
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.9
    • /
    • pp.569-575
    • /
    • 2004
  • This paper is proposed adaptive fuzzy-neural network(FNN) controller for high performance of induction motor drive. The design of this algorithm based on FNN controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control Performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of analysis prove that the proposed control system has strong high performance and robustness to parameter variation. and steady- state accuracy and transient response.

High Performance of Induction Motor Drive with HAl Controller (HAI 제어기에 의한 유도전동기 드라이브의 고성능 제어)

  • Nam, Su-Myeong;Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.570-572
    • /
    • 2005
  • This paper is proposed adaptive hybrid artificial intelligent(HAI) controller for high performance of induction motor drive. The design of this algorithm based on fuzzy-neural network(FNN) controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

  • PDF

Optimization of Cancellation Path Model in Filtered-X LMS for Narrow Band Noise Suppression

  • Kim, Hyoun-Suk;Park, Youngjin
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.69-74
    • /
    • 1999
  • Adaptive algorithms based on gradient adaptation have been extensively investigated and successfully joined with active noise/vibration control applications. The Filtered-X LMS algorithm became one of the basic feedforward algorithms in such applications, but is not fully understood yet. Effects of cancellation path model on the Filtered-X LMS algorithm have investigated and some useful properties related to stability were discovered. Most of the results stated that the error in the cancellation path model is undesirable to the Filtered X LMS. However, we started convergence analysis of Filtered-X LMS based on the assumption that erroneous model does not always degrade its performance. In this paper, we present a way of optimizing the cancellation path modern in order to enhance the convergence speed by introducing intentional phase error. Carefully designed intentional phase error enhances the convergence speed of the Filtered X LMS algorithm for pure tone noise suppression application without any performance loss at steady state.

  • PDF

Well-Conditioned Observer Design via LMI (LMI를 이용한 Well-Conditioned 관측기 설계)

  • 허건수;정종철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.21-26
    • /
    • 2003
  • The well-conditioned observer in a stochastic system is designed so that the observer is less sensitive to the ill-conditioning factors in transient and steady-state observer performance. These factors include not only deterministic issues such as unknown initial estimation error, round-off error, modeling error and sensing bias, but also stochastic issues such as disturbance and sensor noise. In deterministic perspectives, a small value in the L$_2$ norm condition number of the observer eigenvector matrix guarantees robust estimation performance to the deterministic issues and its upper bound can be minimized by reducing the observer gain and increasing the decay rate. Both deterministic and stochastic issues are considered as a weighted sum with a LMI (Linear Matrix Inequality) formulation. The gain in the well-conditioned observer is optimally chosen by the optimization technique. Simulation examples are given to evaluate the estimation performance of the proposed observer.

  • PDF