• Title/Summary/Keyword: Steady Wave

Search Result 275, Processing Time 0.026 seconds

Theoretical study on compression wave propagating in a sudden reduction duct (급축소관을 전파하는 압축파에 관한 이론적 연구)

  • Kim, Hui-Dong;Kim, Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.89-98
    • /
    • 1997
  • Compression waves propagating in a high speed railway tunnel impose large pressure fluctuations on the train body or tunnel structures. The pressure fluctuations can cause ear discomfort for the passengers and increase the aerodynamic resistance of trains. As a fundamental research to resolve the pressure wave phenomenon in the tunnel, a steady theory of Chester-Chisnell- Whitham was applied to a simple shock tube with a sudden cross-sectional area reduction to model trains inside the tunnel. The results of the present theoretical analysis were compared with the experiments of the shock tube. The results show that the reflected compression wave from the model becomes stronger as the strength of incident compression wave and the blockage ratio increase. However, the compression wave passing through the model is not strongly dependent on the blockage ratio. The theoretical results are in good agreement with the experiments.

Numerical Analyses on the Formation, Propagation, and Deformation of Landslide Tsunami Using LS-DYNA and NWT

  • Seo, Minjang;Yeom, Gyeong-Seon;Lee, Changmin;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.11-20
    • /
    • 2022
  • Generally, tsunamis are generated by the rapid crustal movements of the ocean floor. Other factors of tsunami generation include landslides on coastal and ocean floor slopes, glacier collapses, and meteorite collisions. In this study, two numerical analyses were conducted to examine the formation, propagation, and deformation properties of landslide tsunamis. First, LS-DYNA was adopted to simulate the formation and propagation processes of tsunamis generated by dropping rigid bodies. The generated tsunamis had smaller wave heights and wider waveforms during their propagation, and their waveforms and flow velocities resembled those of theoretical solitary waves after a certain distance. Second, after the formation of the landslide tsunami, a tsunami based on the solitary wave approximation theory was generated in a numerical wave tank (NWT) with a computational domain that considered the stability/steady phase. The comparison of two numerical analysis results over a certain distance indicated that the waveform and flow velocity were approximately equal, and the maximum wave pressures acting on the upright wall also exhibited similar distributions. Therefore, an effective numerical model such as LS-DYNA was necessary to analyze the formation and initial deformations of the landslide tsunami, while an NWT with the wave generation method based on the solitary wave approximation theory was sufficient above a certain distance.

A Study on the Multi-resonant characteristics of Half-wave Resonant Type Multi-output ZVS HB Converter for the Plasma Display Panel (PDP용 반파 공진형 멀티출력 하프브리지 컨버터의 다중 공진특성에 관한 연구)

  • Lee, Jae-In;Son, Ho-In
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.6
    • /
    • pp.314-324
    • /
    • 2006
  • In recent years, having the advantages of being small, low in cost and high in efficiency, Half-wave resonant type, (having only one output diode), is used in ZVS Half-Bridge DC/DC converter. This paper presents the operation mode by multi-resonant factors in the Half-wave type multi-resonant converter with direct Buck chopper circuit operated in discontinuous current mode. To study the characteristics of a multi-resonant operation in steady-state, the characteristic impedances in each mode and safe operation-region(S.O.R) are reported. Computer simulation and experimental data are also riven to verify the theoretical results.

A Study on Free Surface Effect of 2-D Airfoils (2차원 익형의 자유수면 효과에 관한 연구)

  • Park, Il-Ryong;Jeon, Ho-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.75-82
    • /
    • 1995
  • The free surface effects on the aerodynamic performance of 2-D wings are investigated based on the potential flow approximation. The wing is represented b source and vortex distributions on the wing surface. The steady free surface effect is taken into account by source distribution on the free surface and the velocity potentials of air and water flows are obtained. Using three different techniques, namely, positive image method, inverse image method and source distribution method, numerical results are obtained for wave elevation, pressure distribution and lift coefficient with various foil sections. The wave elevation calculated by the inverse image method is shown to be very small even at higher speeds so that the free surface effect on the performance of wings is regraded negligible. However, the wave elevations by the positive image method and source distribution method are relatively high at higher speeds and accordingly the free surface effects on wings can not be neglected.

  • PDF

DYNAMICS OF OPEN II-RAYS (META PHYSICS) AND CLOSED II-RAYS

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.39-46
    • /
    • 2000
  • The imploded open $\pi$-rays comprise of the space and their diameters are distributed from nearly zero to infinite. The change of the potential energy in the open $\pi$-ray produces an attraction force between them and it is sensible to the geometric shape factor and its frequency. The equivalent principle of general relativity means that in the wave equation its velocity of the force wave is infinite. The change of the state in a open $\pi$-ray(or any force wave) can be transferred to any sensible open $\pi$-ray via space at a finite velocity. Many properties of the light wave can be deduce from the motions of open $\pi$-rays.The nonsteady and steady Schr dinger equations include the dynamics of open $\pi$-rays and closed $\pi$-rays.$\prod$-ray is a tool of entity for constructing physics and metaphysics at the same time.

  • PDF

Shear Layer and Wave Structure Over Partially Spanning Cavities

  • Das, Rajarshi;Kim, Heuy Dong;Kurian, Job
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.2
    • /
    • pp.46-54
    • /
    • 2013
  • Study of the wave structure and shear layer in the vicinity of a wall mounted cavity is done by time averaged colour schlieren and time resolved instantaneous shadowgraph technique in an M=1.7 flowfield. Effect of change of cavity width on flow structure is investigated by using constant length to depth (L/D) ratio cavity models with varying length to width (L/W) ratio of 0.83 to 4. The time averaged shock wave structure was observed to change with change in cavity width. Dependence of the shock angle at the leading edge on the shear layer width is also evident from the images obtained. Unsteadiness in the flow field in terms of shear layer dynamics and quasi steady nature of shock waves was evident from the images obtained during instantaneous shadowgraph experiments. Apart from the leading and trailing edge shocks, several other waves and flow features were observed. These flow features and the associated physical phenomena are discussed in details and presented in the paper.

Passive control of condensation shock wave in supersonic nozzles (초음속 노즐에서 발생하는 응축충격파의 피동제어)

  • Kim, Hui-Dong;Gwon, Sun-Beom;Setoguchi, Toshiaki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.3980-3990
    • /
    • 1996
  • When a moist air is rapidly expanded in a supersonic nozzle, nonequilibrium condensation occurs at a supersaturation state. Condensation shock wave appears in the nozzle flow if the releasing latent heat due to condensation goes beyond a critical value. It has been known that self-excited oscillations of the condensation shock wave generate in an air or a steam nozzle flow with a large humidity. In the present study, the passive control technique using porous wall with a cavity underneath was applied to the condensation shock wave. The effects of the passive control on the steady and self-excited condensation shock waves were experimentally investigated by Schlieren visualization and static pressure measurements. The result shows that the present passive control is a useful technique to suppress the self-excited oscillations of condensation shock wave.

Oscillating Flow Field Analysis as Shape of Air Chamber in OWC-type Wave Energy Conversion (OWC형 파력발전장치 공기실 형상에 따른 왕복유동장 해석)

  • Moon, Jae-Seung;Hong, Key-Yong;Shin, Seung-Ho;Hyun, Beom-Soo;Ryu, Hywang-Jin;Park, Soon-Jong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.39-44
    • /
    • 2006
  • An OWC-type Wave Energy Conversion passes through 3 steps energy conversion process. This paper deal with the internal oscillating flow and effect of shape of air chamber and duct at setting place of turbine by numerical analysis using commercial CFD code, FLUENT. Air chamber and duct in OWC-type wave energy conversion are adopting sudden expanded and contracted form for high-efficiency. So, whole oscillating flow from OWC-type chamber to outlet duct through duct was solved by steady and unsteady analysis in order that flow efficiency of air chamber and duct was made better.

  • PDF

Oscillating Flow Field Analysis as Shape of Air Chamber in OWC-type Wave Energy Conversion (OWC형 파력발전장치 공기실 형상에 따른 왕복유동장 해석)

  • Hong, Key-Yong;Shin, Seung-Ho;Hyun, Beom-Soo;Ryu, Hwang-Jin;Park, Soon-Jong;Moon, Jae-Seung
    • Journal of Navigation and Port Research
    • /
    • v.31 no.1 s.117
    • /
    • pp.29-33
    • /
    • 2007
  • An OWC-type Wave Energy Conversion passes through 3 steps energy conversion process. This paper deal with the internal oscillating flow and effect of shape of air chamber and duct at setting place of turbine by numerical analysis using commercial CFD code, FLUENT. Air chamber and duct in OWC-type wave energy conversion are adopting sudden expanded and contracted form for high-efficiency. So, whole oscillating flow from OWC-type chamber to outlet duct through duct was solved by steady and unsteady analysis in order that flow efficiency of air chamber and duct was made better.

Nonlinear Waves of a Two-Layer Compressible Fluid over a Bump

  • Kim H. Y.;Choi J. W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.113-119
    • /
    • 2000
  • Two-dimensional steady flow of two immiscible, compressible fluids are considered when the temperature of each layer is constant. Both upper and lower fluids are bounded by two horizontal rigid boundaries with symmetric obstruction of compact support at the tourer boundary. By using asymptotic method, we derive the forced K-dV equation governing interfacial wave. Various solutions and numerical results are presented.

  • PDF