• Title/Summary/Keyword: Steady State Performance

Search Result 1,426, Processing Time 0.026 seconds

Experimental Study of Thermal Performance of Heat Pipe with Axial Trapezoidal Grooves (축방향 사다리꼴 그루브 히트파이프의 열성능에 대한 실험적 연구)

  • Suh, Jeong-Se;Lee, Woon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.407-414
    • /
    • 2003
  • Analysis and experiment are performed to investigate the thermal performance of a heat pipe with axial grooves. The heat pipe was designed in a 6.5 mm I.D., 17 axial trapezoidal grooves. 1000 mm long tube of aluminium, and ammonia as working fluid. A mathematical equations fur heat pipe with axial grooves is formulated to obtain the capillary limitation on heat transport rate in a steady state. As a result, heat transport factor of heat pipe has the maximum at the operating temperature of 293K in 0m elevation. As the elevation of heat pipe increases. the heat transport factor of the heat pipe is reduced markedly, comparing with that of horizontal elevation of the heat pipe. It may be considered that such behavior of heat pipe is caused by the working fluid swarmed back to the condenser port due to gravity force and supercooled by a coolant of heat exchanger. Analytical results of heat transport factor are in a good agreement with those of experiment.

Investigation of vortex core identification method for wind turbine wake (터빈 후류를 관찰하기 위한 와류 코어 식별 기법 연구)

  • Ko, Seungchul;Na, Jisung;Lee, Joon Sang
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.1
    • /
    • pp.19-24
    • /
    • 2017
  • In this study, we conduct a numerical experiment of the single 5MW NREL wind turbine and compare the performance of various vortex core identification for the wake behind the wind turbine. In the kinetic analysis of wind turbine, 20% velocity deficit at 200 s is observed, showing wake which contains tip vortex near blade tip and rotor vortex at the center of the wind turbine. Time series of velocity and turbulent intensity show numerical simulation converge to a quasi-steady state near 200 s. In the comparison between methods for vortex identification, ${\lambda}_2$-method has good performance in terms of tip vortex, rotor vortex, vortex during its cascade process compared to vorticity magnitude criteria, ${\Delta}$-method. We conclude that ${\lambda}_2$-method is suitable for vortex identification method for wake visualization.

Performance Evaluation of a Rapid Three Dimensional Diffusion MRI

  • Numano, Tomokazu;Homma, Kazuhiro;Nishimura, Katsuyuki
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.356-358
    • /
    • 2002
  • MRI, particularly diffusion weighted imaging (DWI), plays vital roles in detection of the acute brain infarction$\^$1-4/ and others metabolic changes of biological tissues. In general, every molecule in biological tissues may diffuse and move randomly in three-dimensional space. However, in clinical diagnosis, only 2D-DWI is used. The authors have developed a new method for rapid three-dimensional DWI (3D-DWI). In this method, by refocusing of the magnetized spin with the applied gradient field, direction of which is opposite to phase encoding field. Magnetized spin of $^1$H is kept under the SSFP (steady state free precession)$\^$5-6/. Under SSFP, in addition of FID, spin echo and stimulated echo are also generated, so the acquired signal is increased. The signal intensity is increased depending on flip angle (FA) of magnetized spin. This phenomenon is confirmed by human brain and phantom studies. The performance of this method is quantitatively analyzed by using both of conventional spin echo DWI and 3D-DWI. From experimental results, three dimensional diffusion weighted images are obtained correctly for liquid phantoms (water, acetone and oil), diffusion coefficient is enhanced in each image. Therefore, this method will provide useful information for clinical diagnosis.

  • PDF

Effects of the Mass of Working Fluid on the Thermal Performance of Heat Pipe with Axial Grooves (그루브형 히트파이프에서 작동유체량이 히트파이프 성능에 미치는 영향)

  • Suh, Jeong-Se;Park, Young-Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • An analytical and experimental study of the thermal performance of axial heat pipe with axial groove is conducted to determine the optimal mass of working fluid for the maximum heat transport capacity of heat pipe with axial grooves. Generally, the mass of working fluid has been fully charged by considering only a geometrical shape of axial grooves embedded in a heat pipe. When the heat pipe is operated in a steady state, the meniscus re-cession phenomena of working fluid is occurred in the evaporator region. In this work, the optimal mass of working fluid was obtained from the axial variation of capillary pressure, the radius of curvature and wetting angle of meniscus of liquid-vapor interface. Experimental results were also obtained by varying the mass of working fluid within a heat pipe, and presented for the maximum heat transport capacity corresponding to the operating temperature and the elevation of heat pipe. Finally, the analytical results of the optimal mass of working fluid were compared with those of the experimental mass of working fluid.

A Campus Community-based Mobility Model for Routing in Opportunistic Networks

  • Pan, Daru;Fu, Min;Sun, Jiajia;Zou, Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1034-1051
    • /
    • 2016
  • Mobility models are invaluable for determining the performance of routing protocols in opportunistic networks. The movement of nodes has a significant influence on the topological structure and data transmission in networks. In this paper, we propose a new mobility model called the campus-based community mobility model (CBCNM) that closely reflects the daily life pattern of students on a real campus. Consequent on a discovery that the pause time of nodes in their community follows a power law distribution, instead of a classical exponential distribution, we abstract the semi-Markov model from the movement of the campus nodes and analyze its rationality. Then, using the semi-Markov algorithm to switch the movement of the nodes between communities, we infer the steady-state probability of node distribution at random time points. We verified the proposed CBCNM via numerical simulations and compared all the parameters with real data in several aspects, including the nodes' contact and inter-contact times. The results obtained indicate that the CBCNM is highly adaptive to an actual campus scenario. Further, the model is shown to have better data transmission network performance than conventional models under various routing strategies.

Fuzzy-based Hybrid Fuzzy-Sliding Mode Controller for the Speed Control of a Hydraulic Inverter Controller (유압식 인버터 제어기의 속도제어를 위한 퍼지기반 하이브리드 슬라이딩모드 제어기 설계)

  • 한권상;최병욱;안현식;김도현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.3
    • /
    • pp.218-226
    • /
    • 2003
  • Due to the friction characteristics of pump, cylinder packing and passenger car, in the elevation system actuated with hydraulic inverter, there exist dead zones. which cannot be controlled by a PID controller. To overcome the drawbacks, in this paper, we propose a new hybrid fuzzy-sliding mode control scheme, which controls the controller output between a sliding mode control output and a PID control output by fuzzy control method. The proposed hybrid control scheme achieves an improved control performance by using both controllers. We first propose a design method of the hybrid controller far a hydraulic system controlled by inverters, then propose a design method of a hybrid fuzzy-sliding mode centre] scheme. The effectiveness of the proposed control scheme is shown by simulation results, in which the proposed hybrid control method yields better control performance then the PID controlled scheme, not only in the zero-crossing speed region but also in the overall control region including steady-state region.

A Study on the Ram Accelerator Performance Improvement Using Numerical Optimization Techniques (수치 최적화 기법을 이용한 램 가속기 성능 향상 연구)

  • Jeon Yong-Hee;Lee Jae-Woo;Byun Yung-Hwan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.77-84
    • /
    • 1999
  • Numerical design optimization techniques are implemented for the improvement of the ram accelerator performance. The design object is to find the minimum ram tube length required to accelerate projectile from initial velocity $V_0$ to target velocity $V_e$. The premixture is composed of $H_2,\;O_2,\;N_2$ and the mole numbers of these species are selected as design variables. The objective function and the constraints are linearized during the optimization process and gradient-based Simplex method and SLP(Sequential Linear Programming) have been employed. With the assumption of two dimensional inviscid flow for internal flow field, the analyses of the nonequilibrium chemical reactions for 8 steps 7 species lave been performed. To determined the tube length, ram tube internal flow field is assumed to be in a quasi-steady state and the flow velocity is divided into several subregions with equal interval. Hence the thrust coefficients and accelerations for corresponding subregions are obtained and integrated for the whole velocity region. With the proposed design optimization techniques, the total ram tube length had been reduced $19\%$ within 7 design iterations. This optimization procedure can be directly applied to the multi-stage, multi-premixture ram accelerator design optimization problems.

  • PDF

Reduced Switch Count Topology of Current Flow Control Apparatus for MTDC Grids

  • Diab, Hatem Yassin;Marei, Mostafa Ibrahim;Tennakoon, Sarath B.
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1743-1751
    • /
    • 2016
  • The increasing demand for high voltage DC grids resulting from the continuous installation of offshore wind farms in the North Sea has led to the concept of multi-terminal direct current (MTDC) grids, which face some challenges. Power (current) flow control is a challenge that must be addressed to realize a reliable operation of MTDC grids. This paper presents a reduced switch count topology of a current flow controller (CFC) for power flow and current limiting applications in MTDC grids. A simple control system based on hysteresis band current control is proposed for the CFC. The theory of operation and control of the CFC are demonstrated. The key features of the proposed controller, including cable current balancing, cable current limiting, and current nulling, are illustrated. An MTDC grid is simulated using MATLAB/SIMULINK software to evaluate the steady state and dynamic performance of the proposed CFC topology. Furthermore, a low power prototype is built for a CFC to experimentally validate its performance using rapid control prototyping. Simulation and experimental studies indicate the fast dynamic response and precise results of the proposed topology. Furthermore, the proposed controller offers a real solution for power flow challenges in MTDC grids.

Stability Analysis and Effect of CES on ANN Based AGC for Frequency Excursion

  • Raja, J.;Rajan, C.Christober Asir
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.552-560
    • /
    • 2010
  • This paper presents an application of layered Artificial Neural Network controller to study load frequency control problem in power system. The objective of control scheme guarantees that steady state error of frequencies and inadvertent interchange of tie-lines are maintained in a given tolerance limitation. The proposed controller has been designed for a two-area interconnected power system. Only one artificial neural network controller (ANN), which controls the inputs of each area in the power system together, is considered. In this study, back propagation-through time algorithm is used as neural network learning rule. The performance of the power system is simulated by using conventional integral controller and ANN controller, separately. For the first time comparative study has been carried out between SMES and CES unit, all of the areas are included with SMES and CES unit separately. By comparing the results for both cases, the performance of ANN controller with CES unit is found to be better than conventional controllers with SMES, CES and ANN with SMES.

Two Vector Based Direct Power Control of AC/DC Grid Connected Converters Using a Constant Switching Frequency

  • Mehdi, Adel;Reama, Abdellatif;Benalla, Hocine
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1363-1371
    • /
    • 2017
  • In this paper, an improved Direct Power Control (DPC) algorithm is presented for grid connected three phase PWM rectifiers. The new DPC approach is based on two main tasks. First the optimization of the look-up table, which is well-known in conventional DPC, is outlined for selecting the optimum converter output voltage vectors. Secondly a very simple and effective method is used to directly calculate their duty cycles from the power errors. Therefore, the measured active and reactive powers are made to track their references using hysteresis controllers. Then two vectors are selected and applied during one control cycle to minimize both the active and reactive power ripples. The main advantages of this method are that there is no need of linear current controllers, coordinates transformations or modulators. In addition, the control strategy is able to operate at constant switching frequencies to ease the design of the power converter and the AC harmonic filter. The control exhibits a good steady state performance and improves the dynamic response without any overshoot in the line current. Theoretical principles of the proposed method are discussed. Both simulation and experimental results are presented to verify the performance and effectiveness of this control scheme.