• 제목/요약/키워드: Steady State Creep Region

검색결과 7건 처리시간 0.019초

화력 발전용 로터강의 초기 변형율이 CYCLIC 크리프 특성에 미치는 영향에 관한 연구 (A Study on the Effect of Initial Strain on Cyclic Creep Properties of Steam Turbine Rotor Steel)

  • 오세규;정순억;한상덕
    • 한국해양공학회지
    • /
    • 제6권1호
    • /
    • pp.78-86
    • /
    • 1992
  • The creep behaviors of 1%Cr-Mo-V and 12%Cr steam turbine rotor steels under static or cyclic load were examined at 600 and $700^{\circ}C$. The relationship between these two kinds of phenomena was studied and the experimental results were summarized as follows: 1) It is confirmed that the cyclic creep strain dependent on time is more available for creep, behavior analysis according to frequency change than that dependent on number of cycles, and the static creep, the special case of cyclic creep with stress ratio of 1 can be also more effectively analyzed by time-dependence. 2) The steady cyclic creep rate vs. the steady static creep rate, increases according to the increase of stress ratio, and this phenomena may occur on occasion of the decrease of the internal stress. 3) The initial strain affects on all the creep properties of the transient region, the steady state region and the rupture time in cyclic creep as well as static creep, and the quantitative relationships among them exist.

  • PDF

직관 용접부의 크리프 특성 불균일에 따른 열영향부 정상상태 응력 예측 (Prediction of Steady-State Stresses within Heat Affected Zone Due to Creep Mismatch in Welded Straight Pipes)

  • 한재준;김상현;정진택;김윤재
    • 대한기계학회논문집A
    • /
    • 제37권3호
    • /
    • pp.405-412
    • /
    • 2013
  • 본 논문은 크리프 파단 수명평가에 주요인자인 정상상태 크리프 응력을 직관 용접부에 대해 정량화한다. 모재와 용접부의 크리프 특성 불균일이 응력에 미치는 영향을 체계적으로 분석하기 위해, 다양한 용접부 불균일에 대해 이차원 유한요소 크리프 탄성해석을 수행하였다. 용접부는 열영향부를 고려하였으며 각각의 재료는 이상화된 탄성-멱 크리프 법칙을 따른다고 가정하였다. 하중에 따른 영향을 보기 위해 내압과 인장하중에 대해 연구를 수행하였다. 용접부 크리프 응력의 정량화를 위해 크리프 불균일 지수를 도입하였으며, 무차원화된 단면평균응력과 선형적인 관계를 확인하였다. 불균일 지수로 정량화한 응력과 Type IV 영역을 모사한 용접부의 유한요소해석 결과 및 영국전력의 R5 문헌값의 비교를 통해 연구결과의 유효성을 검증하였다.

일정하중 및 일정Ct에서 로터강의 크리프 귤열전파 특성 (Creep Crack Propagation Properties of Rotor Steel under Constant Load and Constant Ct Condition)

  • 정순억
    • 한국정밀공학회지
    • /
    • 제18권5호
    • /
    • pp.105-111
    • /
    • 2001
  • The creep crack growth properties in 3.3NiCrMoV steel were investigated at 55$0^{\circ}C$ by using CT specimen under constant load and constant Ct condition that was held during crack growth of Imm distance. Ct lelied on load line displacement rate, C*usually increased with crack length though load is reduced in order to maintain constant Ct value as crack growth and appeared scatter band. At constant load and Ct region, crack growth slope was 0.900 and 0.844 each, on the other hand C* slope was 0.480. Fully coalesced area(FCA) ahead of crack tip increased as Ct increase to the critical value, and after that value FCA decreased. For the tertiary creep stage of crack growth test, the most of displacement was due to the steady state creep, except only small part due to the primary creep and other effects. Therefore, tests were mainly interrupted in the tertiary stage to obtain high value of Ct.

  • PDF

크롬-카바이드 복합체의 고온 크리프 거동 (High Temperature Creep Behavior of Cr3C2 Composites)

  • 김지환;한동빈;김기태
    • 한국세라믹학회지
    • /
    • 제32권11호
    • /
    • pp.1219-1226
    • /
    • 1995
  • Creep behaviors of Cr3C2 composites containing 90 wt% Cr3C2 and 10 wt% Ni were studied at high temperature. Compression tests at 100$0^{\circ}C$ and bending tests at 100$0^{\circ}C$ and 105$0^{\circ}C$ were done in argon environment. In all test conditions primary and steady-state creep behaviors were observed. Stress exponent and activatiion energy were determined from the experimental data. By microstructural analysis of Cr3C2 composites after creep test, the separate agglomerations of Ni phase were observed. Numerical analysis was also studied to analyze bending creep behaviors of Cr3C2 by assumming different tensile and compressive creep behavior in a bending sample. From the analysis, it was found that the stress state at the compressive region as applied stress increased. The observed creep rates were compared with the predicted creep rates by estimating power-law creep parameters from bending test data.

  • PDF

일정하중 및 일정$C_t$에서 로터강의 크리프 균열전파특성 (Creep Crack Growth Properties of Rotor Steel under Constant Load and $C_t$ Condition)

  • 정순억;이헌식;김영대
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.501-506
    • /
    • 2001
  • The creep crack growth properties in 3.5NiCrMoV steel were investigated at $550^{\circ}C$ by using CT specimen under constant $C_t$ condition that was held during crack growth of 1mm distance. $C_t$ lely on load line displacement rate and $C^*$ usually increase with crack length though load is reduced in order to maintain constant $C_t$ value as crack growth. Fully coalesced area(FCA) ahead of crack tip tend to increase as $C_t$ increase to the critical value, and after that value FCA decrease. For the tertiary creep stage of crack growth test, the most of displacement is due to the steady state creep, except only small part due to the primary creep and other effects. Therefore, tests were mainly interrupted in the tertiary stage to obtain high value of $C_t$. At constant load and $C_t$ region, crack growth slope was 0.900 and 0.844 each, on the other hand $C^*$ slope was 0.480.

  • PDF

화력 발전용 고압 로터강의 정하중 및 변동하중하의 고온 크립 균열전파 특성에 관한 연구 (A Study on the High Temperature Creep Crack Growth Properties for Steam Turbine Rotor Steel under Static and Cyclic Loading Condition)

  • 오세규;정순억
    • 한국해양공학회지
    • /
    • 제5권2호
    • /
    • pp.207-207
    • /
    • 1991
  • The crack length measurements by electrical potential(EP) method for 1% Cr-Mo-V and 12%Cr steel of 0.5T-CT specimen were performed at $500^{\circ}C, 600^{\circ}C 700^{\circ}C$, and an applicability of stress intensity factor($K_I$), net section stress($\sigma_{net}$), $C^*$-ingegral and $C_t$ parameter was studied to measure creep crack growth rate(da/dt) with side groove and without side groove under static and cyclic loading condition. The experimental result could be summarized as follows: 1) Crack measurement by EP method was available and coincided with the Johnson,s analytical equation. 2) da/dt by $K_I$ and $\sigma_{net}$ was not adequate because of the wide scatter band according to load and temperature, but $C^*$-integral, except for transition region, was adequate. 3) $C_t$ parameter showed the best fitted line through total creep region without relating with both temperature and load condition. 4) Under the cyclic loading condition, $C_t$ parameter was proper to extimate da/dt. And it was shown that da/dt for 1% Cr-Mo V steel under the static condition(R=1) was 1.16 times faster than the case under cyclic loading(R=0), and for 12% Cr steel, 1.43 times.

화력 발전용 고압 로터강의 정하중 및 변동하중하의 고온 크립 균열전파 특성에 관한 연구 (A Study on the High Temperature Creep Crack Growth Properties for Steam Turbine Rotor Steel under Static and Cyclic Loading Condition)

  • 오세규;정순억
    • 한국해양공학회지
    • /
    • 제5권2호
    • /
    • pp.67-75
    • /
    • 1991
  • The crack length measurements by electrical potential(EP) method for 1% Cr-Mo-V and 12%Cr steel of 0.5T-CT specimen were performed at $500^{\circ}C, 600^{\circ}C 700^{\circ}C$, and an applicability of stress intensity factor($K_I$), net section stress($\sigma_{net}$), $C^*$-ingegral and $C_t$ parameter was studied to measure creep crack growth rate(da/dt) with side groove and without side groove under static and cyclic loading condition. The experimental result could be summarized as follows: 1) Crack measurement by EP method was available and coincided with the Johnson, s analytical equation. 2) da/dt by $K_I$ and $\sigma_{net}$ was not adequate because of the wide scatter band according to load and temperature, but $C^*$-integral, except for transition region, was adequate. 3) $C_t$ parameter showed the best fitted line through total creep region without relating with both temperature and load condition. 4) Under the cyclic loading condition, $C_t$ parameter was proper to extimate da/dt. And it was shown that da/dt for 1% Cr-Mo V steel under the static condition(R=1) was 1.16 times faster than the case under cyclic loading(R=0), and for 12% Cr steel, 1.43 times.

  • PDF