• Title/Summary/Keyword: Staurosporine

Search Result 95, Processing Time 0.028 seconds

Role of $NF-_{{\kappa}B}$ Binding Sites in the Regulation of Inducible Nitric Oxide Synthase by Tyrosine Kinase

  • Ryu, Young-Sue;Hong, Jang-Hee;Lim, Jong-Ho;Bae, So-Hyun;Ahn, Ihn-Sub;Seok, Jeong-Ho;Lee, Jae-Heun;Hur, Gang-Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.1
    • /
    • pp.55-63
    • /
    • 2001
  • In macrophages, lipopolysaccharide (LPS) alone or in combination with $interferon-{\gamma}\;(IFN-{\gamma})$ has been shown to release a nitric oxide (NO) through the increase of the transcription of the inducible nitric oxide synthase (iNOS) gene. To investigate the exact intracellular signaling pathway of the regulation of iNOS gene transcription by LPS plus $IFN-{\gamma},$ the effects of protein tyrosine kinase (PTK) inhibitor and protein kinase C (PKC) inhibitors on NO production, iNOS mRNA expression, nuclear $factor-_{\kappa}B\;(NF-_{\kappa}B)$ binding activity and the promoter activity of iNOS gene containing two $NF-_{\kappa}B$ sites have been examined in a mouse macrophage RAW 264.7 cells. LPS or $IFN-{\gamma}$ stimulated NO production, and their effect was enhanced synergistically by mixture of LPS and $IFN-{\gamma}.$ The PTK inhibitor such as tyrphostin reduced LPS plus $IFN-{\gamma}-induced$ NO production, iNOS mRNA expression and $NF-_{\kappa}B$ binding activity. In contrast, PKC inhibitors such as H-7, Ro-318220 and staurosporine did not show any effect on them. In addition, transfection of RAW 264.7 cells with iNOS promoter linked to a CAT reporter gene revealed that tyrphostin inhibited the iNOS promoter activity through the $NF-_{\kappa}B$ binding site, whereas PKC inhibitors did not. Taken together, these suggest that PTK, but not PKC pathway, is involved in the regulation of the iNOS gene transcription through the $NF-_{\kappa}B$ sites of iNOS promoter in RAW 264.7 macrophages by LPS plus $IFN-{\gamma}$.

  • PDF

Effect of Phytohormones and Chemical Inhibitors on Pathogenesis-related Genes Identified by Differential Hybridization in Rice Suspension Culture Cells

  • Kim, Sang-Gon;Wu, Jing-Ni;Wang, Yiming;White, Ethan E.;Choi, Young-Whan;Kim, Keun-Ki;Choi, In-Soo;Kim, Yong-Cheol;Kim, Sun-Hyung;Kang, Kyu-Young;Kim, Sun-Tae
    • The Plant Pathology Journal
    • /
    • v.26 no.4
    • /
    • pp.386-393
    • /
    • 2010
  • In order to study disease resistance mechanisms in rice against the rice blast fungus Magnaporthe grisea, we screened fungal elicitor-responsive genes from rice suspension-cultured cells treated with fungal elicitors employing differential hybridization (DH). By DH screening, 31 distinct rice clones were isolated and a majority of them were full-length cDNAs encoding pathogenesisrelated (PR) genes. Sixteen of the 31 genes were upregulated at 4, 8, and 12 h following fungal elicitor treatment. To elucidate the effect of signal molecules and biotic elicitors on the regulation of rice defense genes, we further characterized the transcriptional expression patterns of representative isolated PR genes; OsGlu1, OsGlu2, OsTLP, OsRLK, and OsPR-10, following treatment with fungal elicitor, phytohormones, cycloheximide, and inhibitors of protein phosphorylation. Jasmonic acid (JA) induced transcriptional expression of OsGlu1, OsTLP, and OsRLK, but not of OsGlu2 and OsPR-10 at any of the tested time points. Salicylic acid (SA) and abscisic acid weakly induced the expression of OsTLP and OsRLK. SA showed an antagonistic effect with fungal elicitor and JA. Cycloheximide suppressed all these genes upon elicitor treatment, except for OsGlu2. Staurosporine only induced the expression of OsRLK. Application of calyculin A strongly induced OsRLK expression, but suppressed the expression of OsGlu2. Our study yielded a number of PR genes that play a role in defense mechanisms against the rice blast fungus, as well as contribute towards the elucidation of crosstalk between phytohormones and other modifications during defense signaling.

The Signal Transduciton of Ginsenosides, Active Ingredients of Panax ginseng, in Xenopus oocyte: A Model System for Ginseng Study

  • Nah Seung-Yeol;Lee Sang-Mok
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.66-83
    • /
    • 2002
  • Recently, we have provided evidence that ginsenosides, the active components of Panax ginseng, utilize pertussis toxin (PTX)-insensitive $G{\alpha}_{q/11}-phospholipase\;C-{\beta}3(PLC-{\beta}3)$ signal transduction pathway for the enhancement of $Ca^{2+}-activated\;Cl^{-}$ current in the Xenopus oocyte (British J. Pharmacol. 132, 641-647, 2001; JBC 276, 48797-48802, 2001). Other investigators have shown that stimulation of receptors linked to $G{\alpha}-PLC$ pathway inhibits the activity of G proteincoupled inwardly rectifying $K^+$ (GIRK) channel. In the present study, we sought to determine whether ginsenosides influenced the activity of GIRK 1 and GIRK 4 (GIRK 1/4) channels expressed in the Xenopus oocyte, and if so, the underlying signal transduction mechanism. In oocyte injected with GIRK 1/4 channel cRNAs, bath-applied ginsenosides inhibited high potassium (HK) solution-elicited GIRK current $(EC_{50}:4.9{\pm}4.3\;{\mu}g/ml).$ Pretreatment of the oocyte with PTX reduced the HK solution-elicited GIRK current by $49\%,$ but it did not alter the inhibitory ginsenoside effect on GIRK current. Prior intraoocyte injection of cRNA(s) coding $G{\alpha}_q,\;G{\alpha}_{11}\;or\;G{\alpha}_q/G{\alpha}_{11},\;but\;not\;G{\alpha}_{i2}\;or\;G{\alpha}_{oA}$ attenuated the inhibitory ginsenoside effect. Injection of cRNAs coding $G{\beta}_{1{\gamma}2}$ also attenuated the ginsenoside effect. Similarly, injection of the cRNAs coding regulators of G protein signaling 1, 2 and 4 (RGS1, RGS2 and RGS4), which interact with $G{\alpha}_i\;and/or\;G{\alpha}_{q/11}$ and stimulates the hydrolysis of GTP to GDP in active GTP-bound $G{\alpha}$ subunit, resulted in a significant reduction of ginsenoside effect on GIRK current. Preincubation of GIRK channel-expressing oocyte in PLC inhibitor (U73122) or protein kinase C (PKC) inhibitor (staurosporine or chelerythrine) blocked the inhibitory ginsenoside effect on GIRK current. On the other hand, intraoocyte injection of BAPTA, a free $Ca^{2+}$ chelator, had no significant effect on the ginsenoside action. Taken together, these results suggest that ginsenosides inhibit the activity of GIRK 1/4 channel expressed in the Xenopus oocyte through a PTX-insensitive and $G{\alpha}_{q/11}$-,PLC-and PKC-mediated signal transduction pathway.

  • PDF

Potential Role of Protein Kinase C on the Differentiation of Erythroid Progenitor Cells

  • Lee, Sang-Jun;Cho, In-Koo;Huh, In-Hoe;Yoon, Ki-Yom;Ann, Hyung-Soo
    • Archives of Pharmacal Research
    • /
    • v.18 no.2
    • /
    • pp.90-99
    • /
    • 1995
  • The effect of protein kinase C inhibitors, sturosporine and 1-(5-isoquinolinyl sulfonyl)-2-methyl piperazine(H7) on in vitro differentiation of erythroid progenitor cells which were isolated from spleens of mice infected with the anemia-inducing strain of Friend virus were examined. Erythropoietin-mediated differentitation of erythroid progenitor cells, as determined by the incorporation of $^{59}Fe$ into protoporphyrin, was inhibited by staurosporine and H7 in a concentration -dependent manner. Scatchard analysis of the $^3H-phorbol-12$, 13-dibutyrate binding to erythroid progenitor cells revealed that at the high affinity sites the dissociation constant was 22nM and the maximum number of $^3H-phorbol-12$, 13-dibutyrate binding to erythroid progenitor cells revealed that at the high affinity sites the dissociation constant was 22nM and the maximum number of $^3H-phorbol-12$, 13-dibutyrate binding sites per cell was approximately $3.7\times10^5$. Cytosonic protein kinase C was isolated from erthroid progenitor cells and then purified by sequential column chromatogrphy. Two isoforms of protein kinase C were found. Photoaffinity labeling of the purified protein kinase C samples with $^3H-phorbol-12$12-myristate 13-acetate followed by analysis of SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and autofluorography showed radiolabeled 82-KDa pepticles. Rediolabeling of the 82-KDa peptides with $^3H-phorbol-12$myristate 13-acete was almost completely blocked by excess unlabeled phorbol 12-myristate 13-acetate was almost 12-muristate 13-acetate-promoted phosphorylation with the puyrified protein kinase C samples showed that the phosphorylation of 82-KDa peptides was increased as the concentration of phorbol 12-myristate 13-acetate was increased from $10^{-8}M{\;}to{\;}10^{-4}$M. In light of the findings that erythroid progenitor cells possessed an abundance of protein kinase C and that stauroporine and H7 inhibited erythroid differentiation, it seemed likely that protein kinase C would play a role in the erythroid progenitor cell development.

  • PDF

Characterization of HtrA2-deficient Mouse Embryonic Fibroblast Cells Based on Morphology and Analysis of their Sensitivity in Response to Cell Death Stimuli. (HtrA2 유전자가 결손된 mouse embryonic fibroblast 세포주의 형태학적 특징 및 세포사멸 자극에 대한 감수성 조사)

  • Lee, Sang-Kyu;Nam, Min-Kyung;Kim, Goo-Young;Rhim, Hyang-Shuk
    • Journal of Life Science
    • /
    • v.18 no.4
    • /
    • pp.522-529
    • /
    • 2008
  • High-temperature requirement A2(HtrA2) has been known as a human homologue of bacterial HtrA that has a molecular chaperone function. HtrA2 is mitochondrial serine protease that plays a significant role in regulating the apoptosis; however, the physiological function of HtrA2 still remains elusive. To establish experimental system for the investigation of new insights into the function of HtrA2 in mammalian cells, we first obtained $HtrA2^{+/+}$ and $HtrA2^{-/-}$ MEF cells lines and identified those cells based on the expression pattern and subcellular localization of HtrA2, using immunoblot and biochemical assays. Additionally, we observed that the morphological characteristics of $HtrA2^{-/-}$ MEF cells are different form those of $HtrA2^{+/+}$ MEF cells, showing a rounded shape instead of a typical fibroblast-like shape. Growth rate of $HtrA2^{-/-}$ MEF cells was also 1.4-fold higher than that of $HtrA2^{+/+}$ MEF cells at 36 hours. Furthermore, we verified both MEF cell lines induced caspsase-dependent cell death in response to apoptotic stimuli such as heat shock, staurosporine, and rotenone. The relationship between HtrA2 and heat shock-induced cell death is the first demonstration of the research field of HtrA2. Our study suggests that those MEF cell lines are suitable reagents to further investigate the molecular mechanism by which HtrA2 regulates the balance between cell death and survival.