Browse > Article
http://dx.doi.org/10.5423/PPJ.2010.26.4.386

Effect of Phytohormones and Chemical Inhibitors on Pathogenesis-related Genes Identified by Differential Hybridization in Rice Suspension Culture Cells  

Kim, Sang-Gon (Environmental Biotechnology National Core Research Center, Gyeongsang National University)
Wu, Jing-Ni (Division of Applied Life Science (BK21 Program), Gyeongsang National University)
Wang, Yiming (Division of Applied Life Science (BK21 Program), Gyeongsang National University)
White, Ethan E. (Department of Chemistry and Biochemistry, Baylor University)
Choi, Young-Whan (Department of Horicultural Bioscience, Pusan National University)
Kim, Keun-Ki (Department of Life Science and Environmental Biochemistry, Pusan National University)
Choi, In-Soo (Department of Plant Bioscience, Pusan National University)
Kim, Yong-Cheol (Department of Environmental Horticulture, University of Seoul)
Kim, Sun-Hyung (Department of Environmental Horticulture, University of Seoul)
Kang, Kyu-Young (Division of Applied Life Science (BK21 Program), Gyeongsang National University)
Kim, Sun-Tae (Department of Plant Bioscience, Pusan National University)
Publication Information
The Plant Pathology Journal / v.26, no.4, 2010 , pp. 386-393 More about this Journal
Abstract
In order to study disease resistance mechanisms in rice against the rice blast fungus Magnaporthe grisea, we screened fungal elicitor-responsive genes from rice suspension-cultured cells treated with fungal elicitors employing differential hybridization (DH). By DH screening, 31 distinct rice clones were isolated and a majority of them were full-length cDNAs encoding pathogenesisrelated (PR) genes. Sixteen of the 31 genes were upregulated at 4, 8, and 12 h following fungal elicitor treatment. To elucidate the effect of signal molecules and biotic elicitors on the regulation of rice defense genes, we further characterized the transcriptional expression patterns of representative isolated PR genes; OsGlu1, OsGlu2, OsTLP, OsRLK, and OsPR-10, following treatment with fungal elicitor, phytohormones, cycloheximide, and inhibitors of protein phosphorylation. Jasmonic acid (JA) induced transcriptional expression of OsGlu1, OsTLP, and OsRLK, but not of OsGlu2 and OsPR-10 at any of the tested time points. Salicylic acid (SA) and abscisic acid weakly induced the expression of OsTLP and OsRLK. SA showed an antagonistic effect with fungal elicitor and JA. Cycloheximide suppressed all these genes upon elicitor treatment, except for OsGlu2. Staurosporine only induced the expression of OsRLK. Application of calyculin A strongly induced OsRLK expression, but suppressed the expression of OsGlu2. Our study yielded a number of PR genes that play a role in defense mechanisms against the rice blast fungus, as well as contribute towards the elucidation of crosstalk between phytohormones and other modifications during defense signaling.
Keywords
differential hybridization; elicitor; pathogenesisrelated genes; rice suspension-cultured cells;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Shinozaki, K. and Yamaguchi-Shinozaki, K. 2000. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 3:217-223.   DOI   ScienceOn
2 Staskawicz, B. J., Ausubel, F. M., Baker, B. J., Ellis, J. G. and Jones, J. D. 1995. Molecular genetics of plant disease resistance. Science 268:661-667.   DOI   ScienceOn
3 Talbot, N. J. 2003. On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea. Annu. Rev. Microbiol. 57: 177-202.   DOI   ScienceOn
4 Thomma, B. P., Penninckx, I. A., Broekaert, W. F. and Cammue, B. P. 2001. The complexity of disease signaling in Arabidopsis. Curr. Opin. Immunol. 13:63-68.   DOI   ScienceOn
5 Ton, J., De, V. M., Robben, C., Buchala, A., Métraux, J. P., Van Loon, L. C. and Pieterse, C. M. 2002. Characterization of Arabidopsis enhanced disease susceptibility mutants that are affected in systemically induced resistance. Plant J. 29:11-21.   DOI   ScienceOn
6 Turner, J. G., Ellis, C. and Devoto, A. 2002. The jasmonate signal pathway. Plant Cell 14:153-164.   DOI
7 Xu, Y., Chang, P., Liu, D., Narasimhan, M. L., Raghothama, K. G., Hasegawa, P. M. and Bressan, R. A. 1994. Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell 6:1077-1085.   DOI   ScienceOn
8 Koornneef, A., Verhage, A., Leon-Reyes, A., Snetselaar, R., Van Loon, L. and Pieterse, C. M. 2008. Towards a reporter system to identify regulators of cross-talk between salicylate and jasmonate signaling pathways in Arabidopsis. Plant Signal Behav. 3:543-546.   DOI
9 Kunkel, B. N. and Brooks, D. M. 2002. Cross-talk between signaling pathways in pathogen defense. Curr. Opin. Plant Biol. 5:325-331.   DOI   ScienceOn
10 Munch, S., Lingner, U., Floss, D. S., Liudwig, N., Sauer, N. and Deising, H. B. 2008. The hemibiotrophic lifestyle of Colletotrichum species. J. Plant Physiol. 165:41-51.   DOI   ScienceOn
11 Rakwal, R., Agrawal, G. K. and Yonekura, M. 2001. Light-dependent induction of OsPR-10 in rice (Oryza sativa L.) seedlings by the global stress signaling molecules jasmonic acid and protein phosphatase 2A inhibitors. Plant Sci. 161:469-479.   DOI   ScienceOn
12 Murray, S. L., Denby, K. J., Berger, D. K. and Loake, G. J. 2002. Disease resistance signaling in Arabidopsis: applications in the study of plant pathology in South Africa. S. Afr. J. Sci. 98:161-165.
13 Ligterink, W., Kroj, T., Nieden, U., Hirt, H. and Scheel, D. 1997. Receptor-mediated activation of a MAP kinase in pathogen defense of plants. Science 276:2054-2057.   DOI   ScienceOn
14 Perfect, S. E. and Green, J. R. 2001. Infection structures of biotrophic and hemibiotro-phic fungal plant pathogens. Mol. Plant Pathol. 2:101-108.   DOI
15 Rojo, E., Titarenko, E., Leon, J., Berger, S., Vancanneyt, G. and Sanchez-Serrano, J. J. 1998. Reversible protein phosphorylation regulates jasmonic acid-dependent and independent wound signal transduction pathway in Arabidopsis thaliana. Plant J. 13:153-165.   DOI   ScienceOn
16 Seo, M., Nambara, E., Choi, G. and Yamaguchi, S. 2009. Interaction of light and hormone signals in germinating seeds. Plant Mol. Biol. 69:463-472.   DOI   ScienceOn
17 Kim, S., Ahn, I. P. and Lee, Y. H. 2001. Analysis of genes expressed during rice-Magnaporthe grisea interactions. Mol. Plant-Microbe Interact. 14:1340-1346.   DOI   ScienceOn
18 Kim, S. T., Cho, K. S., Kim, S. G., Kang, S. Y. and Kang, K. Y. 2003a. A rice isoflavone reductase-like gene, OsIRL, is induced by rice blast fungal elicitor. Mol. Cells 16:224-231.
19 Kim, S. T., Kim, S. G., Hwang, D. H., Kang, S. Y., Kim, H. J., Lee, B. H., Lee, J. J. and Kang, K. Y. 2004a. Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus. Magnaporthe grisea. Proteomics 4:3569-3578.   DOI   ScienceOn
20 Kim, S. T., Cho, K. S., Yu, S., Kim, S. G., Hong, J. C., Han, C. D., Bae, D. W., Nam, M. H. and Kang, K. Y. 2003b. Proteomic analysis of differentially expressed proteins induced by rice blast fungus and elicitor in suspension-cultured rice cells. Proteomics 3:2368-2378.   DOI   ScienceOn
21 Kim, S. T., Kim, S. G., Hwang, D. H., Kang, S. Y., Koo, S. C., Cho, M. J. and Kang, K. Y. 2004b. Expression of a saltinduced protein (SALT) in suspension-cultured cells and leaves of rice following exposure to fungal elicitor and phytohormones. Plant Cell Rep. 23:256-262.   DOI
22 Kim, S. G., Kim, S. T., Kim, S. K. and Kang, K. Y. 2008a. Gene expression profiling in rice infected with rice blast fungus using SAGE. Plant Pathol. J. 24:384-391.   DOI   ScienceOn
23 Kim, S. T., Yu, S., Kang, Y. H., Kim, S. G., Kim, J. Y., Kim, S. H. and Kang, K. Y. 2008b. The rice pathogen-related protein 10 (JIOsPR10) is induced by abiotic and biotic stresses and exhibits ribonuclease activity. Plant Cell Rep. 27:593-603.   DOI   ScienceOn
24 Kim, S. T., Kang, Y. H., Wang, Y., Wu, J., Park, Z. Y., Rakwal, R., Agrawal, G. K., Lee, S. Y. and Kang, K. Y. 2009. Secretome analysis of differentially induced proteins in rice suspensioncultured cells triggered by rice blast fungus and elicitor. Proteomics 9:1302-1313.   DOI   ScienceOn
25 Dong, X. 1998. SA, JA, ethylene, and disease resistance in plants. Curr Opin Plant Biol. 1:316-323.   DOI   ScienceOn
26 Durner, J., Shah, J. and Klessig, D. F. 1997. Salicylic acid and disease resistance in plants. Trends Plant Sci. 2:266-274.   DOI   ScienceOn
27 Heil, M. and Bostock, R. M. 2002. Induced systemic resistance (ISR) against pathogens in the context of induced plant defenses. Ann Bot (Lond). 89:503-512.   DOI   ScienceOn
28 Flors, V., Ton, J., van Doorn, R., Jakab, G., García-Agustín, P. and Mauch-Mani, B. 2008. Interplay between JA, SA and ABA signalling during basal and induced resistance against Pseudomonas syringae and Alternaria brassicicola. Plant J. 54:81-92.   DOI   ScienceOn
29 Gu, Y. Q., Yang, C., Thara, V. K., Zhou, J. and Martin, G. B. 2000. Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. Plant Cell 12:771-786.   DOI
30 Hamer, J. E. and Talbot, N. J. 1998. Infection-related development in the rice blast fungus Magnaporthe grisea. Curr. Opin. Microbiol. 1:693-697.   DOI   ScienceOn
31 Hwang, D. H., Kim, S. T., Kim, S. G. and Kang, K. Y. 2007. Comprehensive analysis of the expression of twenty-seven beta-1, 3-glucanase genes in rice (Oryza sativa L.). Mol. Cells. 23: 207-214.
32 Hwang, S. H., Lee, I. A., Yie, S. W. and Hwang, D. J. 2008. Identification of an OsPR10a promoter region responsive to salicylic acid. Planta 227:1141-1150.   DOI
33 Ibeas, J. I., Lee, H., Damsz, B., Prasad, D. T., Pardo, J. M., Hasegawa, P. M., Bressan, R. A. and Narasimhan, M. L. 2000. Fungal cell wall phosphomannans facilitate the toxic activity of a plant PR-5 protein. Plant J. 23:375-383.   DOI   ScienceOn
34 Jonak, C., Okresz, L., Bogre, L. and Hirt, H. 2002. Complexity, cross talk and integration of plant MAP kinase signalling. Curr. Opin. Plant Biol. 5:415-424.   DOI   ScienceOn
35 Agrawal, G. K., Rakwal, R. and Jwa, N. S. 2000b. Rice (Oryza sativa L.) OsPR1b gene is phytohormonally regulated in close interaction with light signals. Biochem. Biophys. Res. Commun. 278:290-298.   DOI   ScienceOn
36 Acharya, B. R. and Assmann, S. M. 2009. Hormone interactions in stomatal function. Plant Mol. Biol. 69:451-462.   DOI
37 Adie, B. A., Pérez-Pérez, J., Pérez-Pérez, M. M., Godoy, M., Sánchez-Serrano, J. J., Schmelz, E. A. and Solano, R. 2007. ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19:1665-1681.   DOI   ScienceOn
38 Agrawal, G. K., Jwa, N. S. and Rakwal, R. 2000a. A novel rice (Oryza sativa L.) acidic PR1 gene highly responsive to cut, phytohormones, and protein phosphatase inhibitors. Biochem. Biophys. Res. Commun. 274: 157-165.   DOI   ScienceOn
39 Bari, R. and Jones, J. D. 2009. Role of plant hormones in plant defence responses. Plant Mol. Biol. 69:473-488.   DOI
40 de Torres-Zabala, M., Truman, W., Bennett, M. H., Lafforgue, G., Mansfield, J. W., Rodriguez Egea, P., Bogre, L. and Grant, M. 2007. Arabidopsis abscisic acid signalling pathway to cause disease. EMBO J. 26:1434-1443.   DOI   ScienceOn
41 Doares, S. H., Narvaez-Vasquez, J., Conconi, A. and Ryan, C. A. 1995. Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiol. 108:1741-1746.   DOI
42 Dixon, R. A. and Lamb, C. J. 1990. Molecular communication in interactions between plants and microbial pathogens. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:339-367.   DOI