DOI QR코드

DOI QR Code

Effect of Phytohormones and Chemical Inhibitors on Pathogenesis-related Genes Identified by Differential Hybridization in Rice Suspension Culture Cells

  • Kim, Sang-Gon (Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Wu, Jing-Ni (Division of Applied Life Science (BK21 Program), Gyeongsang National University) ;
  • Wang, Yiming (Division of Applied Life Science (BK21 Program), Gyeongsang National University) ;
  • White, Ethan E. (Department of Chemistry and Biochemistry, Baylor University) ;
  • Choi, Young-Whan (Department of Horicultural Bioscience, Pusan National University) ;
  • Kim, Keun-Ki (Department of Life Science and Environmental Biochemistry, Pusan National University) ;
  • Choi, In-Soo (Department of Plant Bioscience, Pusan National University) ;
  • Kim, Yong-Cheol (Department of Environmental Horticulture, University of Seoul) ;
  • Kim, Sun-Hyung (Department of Environmental Horticulture, University of Seoul) ;
  • Kang, Kyu-Young (Division of Applied Life Science (BK21 Program), Gyeongsang National University) ;
  • Kim, Sun-Tae (Department of Plant Bioscience, Pusan National University)
  • Received : 2010.08.21
  • Accepted : 2010.11.10
  • Published : 2010.12.01

Abstract

In order to study disease resistance mechanisms in rice against the rice blast fungus Magnaporthe grisea, we screened fungal elicitor-responsive genes from rice suspension-cultured cells treated with fungal elicitors employing differential hybridization (DH). By DH screening, 31 distinct rice clones were isolated and a majority of them were full-length cDNAs encoding pathogenesisrelated (PR) genes. Sixteen of the 31 genes were upregulated at 4, 8, and 12 h following fungal elicitor treatment. To elucidate the effect of signal molecules and biotic elicitors on the regulation of rice defense genes, we further characterized the transcriptional expression patterns of representative isolated PR genes; OsGlu1, OsGlu2, OsTLP, OsRLK, and OsPR-10, following treatment with fungal elicitor, phytohormones, cycloheximide, and inhibitors of protein phosphorylation. Jasmonic acid (JA) induced transcriptional expression of OsGlu1, OsTLP, and OsRLK, but not of OsGlu2 and OsPR-10 at any of the tested time points. Salicylic acid (SA) and abscisic acid weakly induced the expression of OsTLP and OsRLK. SA showed an antagonistic effect with fungal elicitor and JA. Cycloheximide suppressed all these genes upon elicitor treatment, except for OsGlu2. Staurosporine only induced the expression of OsRLK. Application of calyculin A strongly induced OsRLK expression, but suppressed the expression of OsGlu2. Our study yielded a number of PR genes that play a role in defense mechanisms against the rice blast fungus, as well as contribute towards the elucidation of crosstalk between phytohormones and other modifications during defense signaling.

Keywords

References

  1. Acharya, B. R. and Assmann, S. M. 2009. Hormone interactions in stomatal function. Plant Mol. Biol. 69:451-462. https://doi.org/10.1007/s11103-008-9427-0
  2. Adie, B. A., Pérez-Pérez, J., Pérez-Pérez, M. M., Godoy, M., Sánchez-Serrano, J. J., Schmelz, E. A. and Solano, R. 2007. ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19:1665-1681. https://doi.org/10.1105/tpc.106.048041
  3. Agrawal, G. K., Jwa, N. S. and Rakwal, R. 2000a. A novel rice (Oryza sativa L.) acidic PR1 gene highly responsive to cut, phytohormones, and protein phosphatase inhibitors. Biochem. Biophys. Res. Commun. 274: 157-165. https://doi.org/10.1006/bbrc.2000.3114
  4. Agrawal, G. K., Rakwal, R. and Jwa, N. S. 2000b. Rice (Oryza sativa L.) OsPR1b gene is phytohormonally regulated in close interaction with light signals. Biochem. Biophys. Res. Commun. 278:290-298. https://doi.org/10.1006/bbrc.2000.3781
  5. Bari, R. and Jones, J. D. 2009. Role of plant hormones in plant defence responses. Plant Mol. Biol. 69:473-488. https://doi.org/10.1007/s11103-008-9435-0
  6. de Torres-Zabala, M., Truman, W., Bennett, M. H., Lafforgue, G., Mansfield, J. W., Rodriguez Egea, P., Bogre, L. and Grant, M. 2007. Arabidopsis abscisic acid signalling pathway to cause disease. EMBO J. 26:1434-1443. https://doi.org/10.1038/sj.emboj.7601575
  7. Doares, S. H., Narvaez-Vasquez, J., Conconi, A. and Ryan, C. A. 1995. Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiol. 108:1741-1746. https://doi.org/10.1104/pp.108.4.1741
  8. Dixon, R. A. and Lamb, C. J. 1990. Molecular communication in interactions between plants and microbial pathogens. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:339-367. https://doi.org/10.1146/annurev.pp.41.060190.002011
  9. Dong, X. 1998. SA, JA, ethylene, and disease resistance in plants. Curr Opin Plant Biol. 1:316-323. https://doi.org/10.1016/1369-5266(88)80053-0
  10. Durner, J., Shah, J. and Klessig, D. F. 1997. Salicylic acid and disease resistance in plants. Trends Plant Sci. 2:266-274. https://doi.org/10.1016/S1360-1385(97)86349-2
  11. Flors, V., Ton, J., van Doorn, R., Jakab, G., García-Agustín, P. and Mauch-Mani, B. 2008. Interplay between JA, SA and ABA signalling during basal and induced resistance against Pseudomonas syringae and Alternaria brassicicola. Plant J. 54:81-92. https://doi.org/10.1111/j.1365-313X.2007.03397.x
  12. Gu, Y. Q., Yang, C., Thara, V. K., Zhou, J. and Martin, G. B. 2000. Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. Plant Cell 12:771-786. https://doi.org/10.1105/tpc.12.5.771
  13. Hamer, J. E. and Talbot, N. J. 1998. Infection-related development in the rice blast fungus Magnaporthe grisea. Curr. Opin. Microbiol. 1:693-697. https://doi.org/10.1016/S1369-5274(98)80117-3
  14. Heil, M. and Bostock, R. M. 2002. Induced systemic resistance (ISR) against pathogens in the context of induced plant defenses. Ann Bot (Lond). 89:503-512. https://doi.org/10.1093/aob/mcf076
  15. Hwang, D. H., Kim, S. T., Kim, S. G. and Kang, K. Y. 2007. Comprehensive analysis of the expression of twenty-seven beta-1, 3-glucanase genes in rice (Oryza sativa L.). Mol. Cells. 23: 207-214.
  16. Hwang, S. H., Lee, I. A., Yie, S. W. and Hwang, D. J. 2008. Identification of an OsPR10a promoter region responsive to salicylic acid. Planta 227:1141-1150. https://doi.org/10.1007/s00425-007-0687-8
  17. Ibeas, J. I., Lee, H., Damsz, B., Prasad, D. T., Pardo, J. M., Hasegawa, P. M., Bressan, R. A. and Narasimhan, M. L. 2000. Fungal cell wall phosphomannans facilitate the toxic activity of a plant PR-5 protein. Plant J. 23:375-383. https://doi.org/10.1046/j.1365-313x.2000.00792.x
  18. Jonak, C., Okresz, L., Bogre, L. and Hirt, H. 2002. Complexity, cross talk and integration of plant MAP kinase signalling. Curr. Opin. Plant Biol. 5:415-424. https://doi.org/10.1016/S1369-5266(02)00285-6
  19. Kim, S., Ahn, I. P. and Lee, Y. H. 2001. Analysis of genes expressed during rice-Magnaporthe grisea interactions. Mol. Plant-Microbe Interact. 14:1340-1346. https://doi.org/10.1094/MPMI.2001.14.11.1340
  20. Kim, S. T., Cho, K. S., Kim, S. G., Kang, S. Y. and Kang, K. Y. 2003a. A rice isoflavone reductase-like gene, OsIRL, is induced by rice blast fungal elicitor. Mol. Cells 16:224-231.
  21. Kim, S. T., Cho, K. S., Yu, S., Kim, S. G., Hong, J. C., Han, C. D., Bae, D. W., Nam, M. H. and Kang, K. Y. 2003b. Proteomic analysis of differentially expressed proteins induced by rice blast fungus and elicitor in suspension-cultured rice cells. Proteomics 3:2368-2378. https://doi.org/10.1002/pmic.200300577
  22. Kim, S. T., Kim, S. G., Hwang, D. H., Kang, S. Y., Kim, H. J., Lee, B. H., Lee, J. J. and Kang, K. Y. 2004a. Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus. Magnaporthe grisea. Proteomics 4:3569-3578. https://doi.org/10.1002/pmic.200400999
  23. Kim, S. T., Kim, S. G., Hwang, D. H., Kang, S. Y., Koo, S. C., Cho, M. J. and Kang, K. Y. 2004b. Expression of a saltinduced protein (SALT) in suspension-cultured cells and leaves of rice following exposure to fungal elicitor and phytohormones. Plant Cell Rep. 23:256-262. https://doi.org/10.1007/s00299-004-0836-5
  24. Kim, S. G., Kim, S. T., Kim, S. K. and Kang, K. Y. 2008a. Gene expression profiling in rice infected with rice blast fungus using SAGE. Plant Pathol. J. 24:384-391. https://doi.org/10.5423/PPJ.2008.24.4.384
  25. Kim, S. T., Yu, S., Kang, Y. H., Kim, S. G., Kim, J. Y., Kim, S. H. and Kang, K. Y. 2008b. The rice pathogen-related protein 10 (JIOsPR10) is induced by abiotic and biotic stresses and exhibits ribonuclease activity. Plant Cell Rep. 27:593-603. https://doi.org/10.1007/s00299-007-0485-6
  26. Kim, S. T., Kang, Y. H., Wang, Y., Wu, J., Park, Z. Y., Rakwal, R., Agrawal, G. K., Lee, S. Y. and Kang, K. Y. 2009. Secretome analysis of differentially induced proteins in rice suspensioncultured cells triggered by rice blast fungus and elicitor. Proteomics 9:1302-1313. https://doi.org/10.1002/pmic.200800589
  27. Koornneef, A., Verhage, A., Leon-Reyes, A., Snetselaar, R., Van Loon, L. and Pieterse, C. M. 2008. Towards a reporter system to identify regulators of cross-talk between salicylate and jasmonate signaling pathways in Arabidopsis. Plant Signal Behav. 3:543-546. https://doi.org/10.4161/psb.3.8.6151
  28. Kunkel, B. N. and Brooks, D. M. 2002. Cross-talk between signaling pathways in pathogen defense. Curr. Opin. Plant Biol. 5:325-331. https://doi.org/10.1016/S1369-5266(02)00275-3
  29. Munch, S., Lingner, U., Floss, D. S., Liudwig, N., Sauer, N. and Deising, H. B. 2008. The hemibiotrophic lifestyle of Colletotrichum species. J. Plant Physiol. 165:41-51. https://doi.org/10.1016/j.jplph.2007.06.008
  30. Murray, S. L., Denby, K. J., Berger, D. K. and Loake, G. J. 2002. Disease resistance signaling in Arabidopsis: applications in the study of plant pathology in South Africa. S. Afr. J. Sci. 98:161-165.
  31. Ligterink, W., Kroj, T., Nieden, U., Hirt, H. and Scheel, D. 1997. Receptor-mediated activation of a MAP kinase in pathogen defense of plants. Science 276:2054-2057. https://doi.org/10.1126/science.276.5321.2054
  32. Perfect, S. E. and Green, J. R. 2001. Infection structures of biotrophic and hemibiotro-phic fungal plant pathogens. Mol. Plant Pathol. 2:101-108. https://doi.org/10.1046/j.1364-3703.2001.00055.x
  33. Rakwal, R., Agrawal, G. K. and Yonekura, M. 2001. Light-dependent induction of OsPR-10 in rice (Oryza sativa L.) seedlings by the global stress signaling molecules jasmonic acid and protein phosphatase 2A inhibitors. Plant Sci. 161:469-479. https://doi.org/10.1016/S0168-9452(01)00433-2
  34. Rojo, E., Titarenko, E., Leon, J., Berger, S., Vancanneyt, G. and Sanchez-Serrano, J. J. 1998. Reversible protein phosphorylation regulates jasmonic acid-dependent and independent wound signal transduction pathway in Arabidopsis thaliana. Plant J. 13:153-165. https://doi.org/10.1046/j.1365-313X.1998.00020.x
  35. Seo, M., Nambara, E., Choi, G. and Yamaguchi, S. 2009. Interaction of light and hormone signals in germinating seeds. Plant Mol. Biol. 69:463-472. https://doi.org/10.1007/s11103-008-9429-y
  36. Shinozaki, K. and Yamaguchi-Shinozaki, K. 2000. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 3:217-223. https://doi.org/10.1016/S1369-5266(00)80068-0
  37. Staskawicz, B. J., Ausubel, F. M., Baker, B. J., Ellis, J. G. and Jones, J. D. 1995. Molecular genetics of plant disease resistance. Science 268:661-667. https://doi.org/10.1126/science.7732374
  38. Talbot, N. J. 2003. On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea. Annu. Rev. Microbiol. 57: 177-202. https://doi.org/10.1146/annurev.micro.57.030502.090957
  39. Thomma, B. P., Penninckx, I. A., Broekaert, W. F. and Cammue, B. P. 2001. The complexity of disease signaling in Arabidopsis. Curr. Opin. Immunol. 13:63-68. https://doi.org/10.1016/S0952-7915(00)00183-7
  40. Ton, J., De, V. M., Robben, C., Buchala, A., Métraux, J. P., Van Loon, L. C. and Pieterse, C. M. 2002. Characterization of Arabidopsis enhanced disease susceptibility mutants that are affected in systemically induced resistance. Plant J. 29:11-21. https://doi.org/10.1046/j.1365-313x.2002.01190.x
  41. Turner, J. G., Ellis, C. and Devoto, A. 2002. The jasmonate signal pathway. Plant Cell 14:153-164. https://doi.org/10.1105/tpc.000679
  42. Xu, Y., Chang, P., Liu, D., Narasimhan, M. L., Raghothama, K. G., Hasegawa, P. M. and Bressan, R. A. 1994. Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell 6:1077-1085. https://doi.org/10.1105/tpc.6.8.1077

Cited by

  1. Molecular characterization of PR and WRKY genes during SA- and MeJA-induced resistance against Colletotrichum musae in banana fruit vol.79, 2013, https://doi.org/10.1016/j.postharvbio.2013.01.004
  2. Rice suspension cultured cells are evaluated as a model system to study salt responsive networks in plants using a combined proteomic and metabolomic profiling approach vol.13, pp.12-13, 2013, https://doi.org/10.1002/pmic.201200425