• Title/Summary/Keyword: Stator flux observer

Search Result 94, Processing Time 0.029 seconds

A High-Performance Position Sensorless Control System of Reluctance Synchronous Motor with Direct Torque Control (직접토크제어에 의한 위치검출기 없는 리럭턴스 동기전동기의 고성능 제어시스템)

  • 김민회;김남훈;백원식
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.81-90
    • /
    • 2002
  • This paper presents an Implementation of digital high-performance position sensorless control system of Reluctance Synchronous Motor(RSM) drives with Direct Torque Control(DTC). The system consists of stator flux observer, speed and torque estimator, two digital hysteresis controllers, an optimal switching look-up table, Insulated Gate Bipolar Transistor(IGBT) voltage source inverter, and TMS320C31 DSP board. The stator flux observer Is based on the combined voltage and current model with stator flux feedback adaptive control of which inputs are current and voltage sensed on motor terminal for wide speed range. In order to prove the suggested sensorless control algorithm for industrial field application, we have some simulation and actual experiment at low and high speed range. The developed high-performance speed control by fully digital system are shown a good response characteristic of control results and high performance features using 1.0[kW] RSM having 2.57 reluctance ratio of $L_d/L_q$.

A Stable Sensorless Speed Control for Induction Motor in the Overall Range (전영역에서 안정된 유도전동기의 센서리스 속도제어)

  • 김종수;김성환;오세진
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.641-647
    • /
    • 2004
  • By most sensorless speed control schemes for induction motor. the control performances in high speed range are good, but it is difficult to obtain satisfactory results in low speed region. This paper proposes a new method controlling the low and the high speed regions separately to attain the stable operation in the overall range. The current error compensation method, in which the controlled stator voltage is applied to the induction motor so that the error between stator currents of the numerical model and the actual motor can be forced to decay to zero as time proceeds. is used in the low speed region In the high speed region. the method with adaptive observer is utilized. This control strategy contains an adaptive state observer for flux estimation. The rotor speed can be calculated from the rotor flux and the motor currents. The experimental results indicate good speed and load responses from the very low speed range to the high, and also show accurate speed changing performance between the low and the high speed range.

A Speed Control of Sensorless Induction Motor using Direct Torque Control (직접 토오크 제어를 이용한 센스리스 유도전동기의 속도제어)

  • 박건우;고태언;하홍곤
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.181-185
    • /
    • 2001
  • This paper presents a digitally speed sensorless control system for induction motor with direct torque control (DTC). The drive is based on Mode1 Reference Adaptive System (MRAS) using state observer as a reference model fat flux estimation. The system are closed loop stator flux and torque observer for wide speed range that inputs are currents and voltages sensing of motor terminal, model reference adaptive control (MRAS) with rotor flux linkages for the speed turning aignal at low speed range, two hysteresis controllers. The Proposed system is verified through simulation.

  • PDF

Performance Evaluation of an Integrated Starter-Alternator with an IPM Synchronous Machine under Sensor-less Operation

  • Xu, Zhuang;Rahman, M.F.;Wang, G.;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.49-57
    • /
    • 2012
  • This paper presents performance evaluation of an Integrated Starter-Alternator (ISA) prototype with an Interior Permanent Magnet (IPM) synchronous machine under sensor-less operation. To attain a high starting torque at zero speed and in subsequent extremely low speed range, a hybrid signal injection method is proposed. At higher speed, an improved stator flux observer is used for the stator flux estimation. This observer is able to produce accurately-estimated stator flux linkage for high performance Direct Torque and Flux Control (DTFC) implementation. The sensor-less DTFC IPM synchronous machine drive takes full advantage of the capacity of the power converter and fulfills the control specifications for the ISA. The trajectory control algorithm responds rapidly and in a well behaved manner over a wide range of operating conditions. The experimental results verify the feasibility and advantages of the system.

A Study on Inductance compensation of Reluctance Synchronous Motor with Neural Network (신경망을 이용한 리럭턴스 동기전동기(Reluctance Synchronous Motor)의 인덕턴스 보상에 관한 연구)

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik;Park, Hong-Il;Kim, Dong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.151-154
    • /
    • 2002
  • This paper presents an implementation of high-dynamic performance control system of Reluctance Synchronous Motor(RSM) drives for an industrial servo drive system with direct torque control(DTC). The estimation of the stator flux and torque are obtained by using flux observer which a saturated inductance Ld and Lq of d-q axises can be compensated by using the neural network from measuring the modulus and angle of the stator current space vector. To obtain fast torque response and maximum torque/current, the reference command flux is ensured by imposing Ids=Iqs. The control strategy is proposed to fast response and optimal efficiency for RSM drive. The developed digitally high-performance control system are shown a good response characteristic of control results and high performance features using 1.0kW RSM.

  • PDF

An Induction Motor Control System with Direct Torque and Flux Control (직접 토크 및 자속제어에 의한 유도전동기 제어시스템)

  • Kim, Min-Huei;Kim, Nam-Hun;Kim, Min-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.79-84
    • /
    • 2000
  • This paper presents an implementation of digital position control system for an induction motor vector drives by a direct torque control(DTC) using the 16bit DSP TMS320 F240. The DSP controller enable enhanced real time algorithm and cost-effective design of intelligent controller for motors which can be yield enhanced operation, fewer system components, lower system cost, increased efficiency and high performance. The system presented are stator flux and torque observer using current model that inputs are current sensing of motor terminal and rotor angle for a low speed operating area, two hysteresis controller, optimal switching look-up table, and IGBT voltage source inverter by fully integrated control software. The developed control system are shown a good motion control response characteristic results and high performance features using 2.2Kw general purposed induction motor.

  • PDF

A Speed Sensorless Induction Motor Control System with Direct Torque Control system (직접 토크제어에 의한 속도검출기 없는 유도전동기 제어시스템)

  • Kim, Nam-Hun;Kim, Min-Ho;Kim, Min-Huei;Kim, Dong-Hee;Choi, Kyung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.281-284
    • /
    • 2001
  • This paper presents implementation of digitally speed sensorless control system for induction motor with a direct torque control(DTC) using 32bit DSP TMS320C31. The system are closed loop stator flux and torque observer for wide speed range that inputs are currents and voltages sensing of motor terminal, MRAS with rotor flux linkages for the speed turning signal, two hysteresis controllers, optimal switching look-up table and IGBT voltage source inverter. There are suggested a control algorithm and system, and given simulation and implementation results on the 2.2Kw general purposed induction motor.

  • PDF

Sliding Mode Cascade Observer for Sensorless Control of Induction Motor (유도 전동기의 센서없는 속도제어를 위한 슬라이딩 모드 축차 관측기)

  • Kim, Eung-Seok;Song, Joong-Ho;Oh, Sang-Rok
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2057-2059
    • /
    • 2001
  • A nonlinear adaptive speed controller is designed for induction motors. Only the measurement of the stator current is used to design the controller and the observers. The sliding mode cascade observer is introduced to estimate the stator current and its time derivatives. The open-loop observer are designed to estimate the rotor flux and its time derivatives. The adaptive observer is also designed to estimate the rotor resistance. Sequentially, the rotor speed can be calculated using these estimated values. It is shown that the estimation errors of the corresponding states and the parameter converge to the specified residual set. It is also shown that the speed controller using these estimates is performed well. The experimental results are represented to investigate the validity of the proposed observer and controller.

  • PDF

Efficiency Optimization Control of Induction Motor using Adaptive Flux Observer (적응 자속 관측기를 이용한 유도전동기의 효율 최적화 제어)

  • 정동화;박기태;이홍균
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.88-95
    • /
    • 2001
  • Stator core loss has significant adverse effects when an induction motor is controlled by the conventional vector control method. Therefore, taking core toss into account should make it possible to control the torque very precisely. This paper proposes a speed sensorless vector control method for an induction motor at optimum efficiency and high response taking core loss account. The proposed vector control system consists of a speed adaptive rotor flux observer which takes core loss into account and employs a direct vector control which compensates for the influence of core loss. Also, in this paper, a vector controlled induction motor with a deadbeat rotor flux controller is developed. The method ensures optimum efficiency in the steady state without degradation of the dynamic response. The validity of the proposed technique is confirmed by simulation results for induction motor drive system.

  • PDF

Sensorless Vector Control for High performance Drive of IPMSM (IPMSM의 고성능 드라이브를 위한센서리스 벡터제어)

  • Lee, Jung-Chul;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.3
    • /
    • pp.126-131
    • /
    • 2002
  • This paper is proposed to position and speed control of interior permanent magnet synchronous motor(IPMSM) drive without mechanical sensor. The rotor position, which is an essential component of any vector control schemes, is calculated through the instantaneous stator flux position and an estimated flux value of rotating reference frame. A closed-loop state observer is implemented to compute the speed feedback signal. The validity of the proposed sensorless scheme is confirmed by simulation and its dynamic performance is examined in detail.