• Title/Summary/Keyword: Stator flux

Search Result 604, Processing Time 0.029 seconds

Sensorless Speed Control of PMSM using Stator Flux Estimation and PLL (고정자 자속 추정과 PLL을 이용한 동기모터의 센서리스 속도 제어)

  • Kim, Min Ho;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.2
    • /
    • pp.35-40
    • /
    • 2015
  • This paper presents the sensorless position control of the Permanent Magnet Synchronous Motor (PMSM) using stator flux estimation and Phase Lock Loop (PLL). The field current and the torque current are required in order to perform the vector control of the PMSM. At this time, it is necessary for the torque to know the exact position of the magnetic flux generated by the permanent magnet, because the torque must be applied torque current in the direction orthogonal to the permanent magnet. In general the speed of the PMSM is controlled by using a magnetic position sensor. However, this paper, we estimates the stator flux by using the PLL method without the magnetic position sensor. This method is simple and easy, in addition it has the advantage of a stabile estimation of the rotor. Finally the proposed algorithm was confirmed by experimental results and showed the good performance.

An Improved Flux Observer for Sensorless Permanent Magnet Synchronous Motor Drives with Parameter Identification

  • Lin, Hai;Hwang, Kyu-Yun;Kwon, Byung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.516-523
    • /
    • 2013
  • This paper investigates an improved stator flux linkage observer for sensorless permanent magnet synchronous motor (PMSM) drives using a voltage-based flux linkage model and an adaptive sliding mode variable structure. We propose a new observer design that employs an improved sliding mode reaching law to achieve better estimation accuracy. The design includes two models and two adaptive estimating laws, and we illustrate that the design is stable using the Popov hyper-stability theory. Simulation and experimental results demonstrate that the proposed estimator accurately calculates the speed, the stator flux linkage, and the resistance while overcoming the shortcomings of traditional estimators.

Selection of Optimal Stator Flux Reference of Stator Flux-Oriented Induction Machine Drive in Field Weakening Region (약계자영역에서 유도전동기의 고정자자속 기준 제어를 위한 최적 기준자속 선정방법)

  • Sin, Myeong-Ho;Hyeon, Dong-Seok;Jo, Sun-Bong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.7
    • /
    • pp.494-499
    • /
    • 2000
  • In a conventional stator flux-oriented(SFO) induction machine drive system, the field weakening method is to vary flux reference in proportion to the inverse of the rotor speed. This paper investigates that maximum torque capability cannot be obtained in the conventional system and proposes a new selection method of flux reference to obtain maximum torque capability over the field weakening region by considering voltage, torque, and current limits.

  • PDF

Adaptive Feedback Linearization Control Based on Stator Fluxes Model for Induction Motors

  • Jeon, Seok-Ho;Park, Jin-Young
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.253-263
    • /
    • 2002
  • This paper presents an adaptive feedback linearization control scheme for induction motors using stator fluxes. By using stator flukes as states, overparameterization is prevented and control inputs can be determined straightforwardly unlike in existing schemes. This approach leads to the decrease of the relative degree for the flux modulus and thus yields a simpler control algorithm than the prior results. In this paper. adaptation schemes are suggested to compensate for the variations of stator resistance. rotor resistance and load torque. In particular, the adaptation to the variation of stator resistance with a feedback linearization control is a new trial. In addition, to improve the convergence of rotor resistance estimation, the differences between stator currents and its estimates are used for the parameter adaptation. The simulations show that torque and flux are controlled independently and that the estimates of stator resistance, rotor resistance, and load torque converge to their true values. Actual experiments on a 3.7㎾ induction motor verify the effectiveness of the proposed method.

A High-Performance Position Sensorless Motion Control System of Induction Motor with Direct Torque Control (직접 토크제어에 의한 위치검출기 없는 유도전동기의 고성능 모션제어 시스템)

  • Kim, Min-Hoe;Kim, Nam-Hun;Baek, Won-Sik
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.7
    • /
    • pp.399-405
    • /
    • 2002
  • This paper presents an implementation of digital high-performance Position sensorless motion control system of an induction motor drives with Direct Torque Control(DTC). The system consist of closed loop stator flux and torque observer, speed and torque estimators, two hysteresis controller, optimal switching look-up table, IGBT voltage source inverter, and TMS320C31 DSP board. The stator flux observer is based on the combined current and voltage model with stator flux feedback adaptive control of which inputs are current and voltage sensed on motor terminal for wide speed range. The speed observer is using the model reference adaptive system(MRAS) with rotor flux linkages for speed turning signal. The simulation and experimental results are provided to evacuate the consistency and the performance of the suggested position sensorless control algorithm. The developed position sensorless system are shown a good motion control response characteristic and high performance features using 2.2[kw] general purposed induction motor.

Study of Shorted-turn for Cylindrical Synchronous Generator Rotor (원통형 동기발전기 회전자의 층간단락에 관한 연구)

  • Kim, Young-Jun;Kim, Jang-Mok;Lee, Sang-Hyuk;Ahn, Jin-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.52-56
    • /
    • 2006
  • This paper describes the methods for the detection of shorted-turn in the rotor of a cylindrical synchronous generator. A search coil is installed in the air-gap to detect the shorted-turn. The occurrence of a fault in the rotor winding results in a decrease of the induced voltages in the stator. And the magnitude of the rotor flux can be estimated by using the search coil and the estimated stator voltages respectively. And the magnitude of the estimated rotor flux is used for discriminating the rotor windings short or not by detecting the magnitude of the rotor flux. The method using a search coil located in the air-gap can detect not only the occurrence of a turn fault but also its position in the rotor winding. But the method using the estimated stator voltages gives the magnitude of the rotor flux, and only the number of a short-turn.

A High-Performance Speed Sensorless Control System for Induction Motor with Direct Torque Control (직접 토크제어에 의한 속도검출기 없는 유도전동기의 고성능 제어시스템)

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.1
    • /
    • pp.18-27
    • /
    • 2002
  • This paper presents an implementation of digital high-performance speed sensorless control system of an induction motor drives with Direct Torque Control(DTC). The system consists of closed loop stator flux and torque observer, speed and torque estimators, two hysteresis controllers, an optimal switching look-up table, IGBT voltage source inverter, and TMS320C31 DSP controller board. The stator flux observer is based on the combined current and voltage model with stator flux feedback adaptive control for wide speed range. The speed estimator is using the model reference adaptive system(MRAS) with rotor flux linkages for speed turning signal estimation. In order to prove the suggested speed sensorless control algorithm, and to obtain a high-dynamic robust adaptive performance, we have some simulations and actual experiments at low(20rpm) and high(1000rpm) speed areas. The developed speed sensorless system are shown a good speed control response characteristic, and high performance features using 2.2[kW] general purposed induction motor.

A High-Performnce Sensorloss Control System of Reluctance Synchronous Motor with Direct Torque Control by Consideration of Nonlinerarly Inductances

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik
    • Journal of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.146-153
    • /
    • 2002
  • this paper presents an implementation of digital control system of speed sensorless for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The problem of DTC for high-dynamic performance RSM drive is generating a nonlinear torque due to a saturated nonlinear inductance curve with various load currents. The control system consists of stator flux observer, compensating inductance look-up table, rotor position/speed/torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source unverter, and TMS320C31 DSP controller. The stator flux observer is based on the combined voltage and current model with stator flux feedback adapitve control that inputs are the compensated inductances, current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor position is estimated rotor speed is determined by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operation area. It does not requrie the knowledge of any montor paramenters, nor particular care for moter starting, In order to prove the suggested control algorithm, we have simulation and testing at actual experimental system. The developed sensorless control system is showing a good speed control response characterisitic result and high performance features in 20/1500 rpm with 1.0Kw RSM having 2.57 ratio of d/q reluctance.

Vector Control System of Induction Motor Using the Third Harmonic Component of the Stator Voltage (고정자 전압의 제3고조파 성분을 이용한 유도전동기의 벡터제어 시스템)

  • Ro, Ea-Sug;Jung, Jong-Jin;Kim, Heung-Geun
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.479-481
    • /
    • 1994
  • A direct vector control system of induction machine based determination of the spatial position of the airgap flux from the third harmonic component of the stator voltage is presented in this paper. The Rotor flux, necessary in direct vector control system, is estimated with the stator current and the airgap flux acquired from the third harmonic component of the stator voltage. And it will be used as an important information to implement the vector control system of the induction motor drive.

  • PDF

Analysis on Parameter Detuning of Induction Motor Drives in Constant Torque Region (일정토크영역에서 유도전동기 고정자자속기준제어의 파라미터 비동조 영향 분석)

  • Shin, Myoung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.11
    • /
    • pp.81-86
    • /
    • 2012
  • It is well known that the stator-flux-oriented induction motor drives are not dependent on parameter detuning in constant torque region except low speed range. This paper presents parameter detuning effects of stator-flux-oriented induction motor drives in constant torque region. The detuning effects of stator resistance, rotor resistance and rotor leakage inductance are analyzed.