• Title/Summary/Keyword: Stator current

Search Result 683, Processing Time 0.034 seconds

Sensorless Speed Control of PMSM using Stator Flux Estimation and PLL (고정자 자속 추정과 PLL을 이용한 동기모터의 센서리스 속도 제어)

  • Kim, Min Ho;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.2
    • /
    • pp.35-40
    • /
    • 2015
  • This paper presents the sensorless position control of the Permanent Magnet Synchronous Motor (PMSM) using stator flux estimation and Phase Lock Loop (PLL). The field current and the torque current are required in order to perform the vector control of the PMSM. At this time, it is necessary for the torque to know the exact position of the magnetic flux generated by the permanent magnet, because the torque must be applied torque current in the direction orthogonal to the permanent magnet. In general the speed of the PMSM is controlled by using a magnetic position sensor. However, this paper, we estimates the stator flux by using the PLL method without the magnetic position sensor. This method is simple and easy, in addition it has the advantage of a stabile estimation of the rotor. Finally the proposed algorithm was confirmed by experimental results and showed the good performance.

Fault Analysis of IPM type BLDC Motor Using Nonlinear Modeling of Stator Inter Turn Faults (고정자 절연파괴 비선형 모델링을 이용한 매입형 영구자석 전동기의 고장분석)

  • Kim, Kyung-Tae;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.531-537
    • /
    • 2011
  • This paper proposes a finite element method (FEM)-based model of an interior permanent magnet (IPM) type BLDC motor having stator inter-turn faults. For more realistic simulation studies, the magnetic non-linearity is also considered in proposed model. And the simulation data are verified through experiment. By integrating the developed model with a current-controlled voltage source inverter (CCVSI) model, the characteristics of an inter-turn fault operated by six-switched inverter are investigated considering the speed control. And the circulating current, which is induced by magnetic linkage flux originated from PM, was analyzed from the view point of distortion of air-gap magnetic flux distribution caused deterioration of their torque.

A High-Performance Sensorless Control System of Reluctance Synchronous Motor with Direct Torque Control

  • Kim Min-Huei;Kim Nam-Hun;Choi Kyeong-Ho;Kim Dong-Hee;Hwang Dong-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.355-359
    • /
    • 2001
  • This paper presents an implementation of digital control system of speed sensorless for Reluctance Synchronous Motor (RSM) drives with DTC. The control system consists of stator flux observer, rotor position/speed/torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source inverter, and TMS320C31 DSP controller by using fully integrated control software. The stator flux observer is based on the combined voltage and current model with stator flux feedback adaptive control that inputs are current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor position is estimated by observed stator flux-linkage space vector. The estimated rotor speed is determined by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operating area. It does not require the knowledge of any motor parameters, nor particular care for motor starting, In order to prove the suggested control algorithm, we have a simulation and testing at actual experimental system. The developed sensorless control system is shown a good speed control response characteristic results and high performance features in 50/1000 rpm with 1.0Kw RSM having 2.57 ratio of d/q reluctance.

  • PDF

Stator winding faults diagnosis system of induction motor using LabVIEW (LabVIEW를 이용한 유도전동기 고정자 권선 고장진단시스템)

  • Song, Myung-Hyun;Park, Kyu-Nam;Lee, Tae-Hun;Han, Dong-Gi;Park, Kyung-Han
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2658-2660
    • /
    • 2005
  • This paper presents a stator winding fault diagnosis technique of induction motor on the PC - based virtual instrumentation system designed using the graphical programming language LabVIEW. This method collects the 3-phase current signals using the current probe amplifier and PXI/DAQ system then the preprocessing removes the noise using LPF, after then this method transforms the stator current to Park's vector and obtains the each Park's Vector pattern and detects stator winding fault by comparing the obtained faulted pattern with the healthy pattern. This proposed LabVIEW based diagnosis system is applied to the 3 phase 1 hp induction motor and obtained the reasonable results under no load condition. The test results give us the possibility a simple and realistic on-line winding fault diagnosis system.

  • PDF

The Characteristics Analysis of a PMSM with Current Angle Variations according to Stator Winding Arrangements (전류위상 변화 시 고정자 권선방법에 따른 이중 3상 영구자석 동기 전동기의 특성 해석)

  • Kim, Tae Heoung
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.441-445
    • /
    • 2020
  • A Permanent Magnet Synchronous Motor (PMSM) for an electrical power steering system (EPS) is adopting various dual three-phase type stator windings to get the high fault tolerance capability when the motor runs at the failure condition. In this paper, we analyze the effects of stator winding arrangements on the characteristics such as torque and efficiency of the PMSM with leading and lagging current angle variations using finite element method. As a result, the most valuable design criteria are proposed to select stator winding method. Especially, we suggest the most appropriate winding method in terms of torque and efficiency, extending constant output area and decreasing noise and torque ripples.

A High-Performnce Sensorloss Control System of Reluctance Synchronous Motor with Direct Torque Control by Consideration of Nonlinerarly Inductances

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik
    • Journal of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.146-153
    • /
    • 2002
  • this paper presents an implementation of digital control system of speed sensorless for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The problem of DTC for high-dynamic performance RSM drive is generating a nonlinear torque due to a saturated nonlinear inductance curve with various load currents. The control system consists of stator flux observer, compensating inductance look-up table, rotor position/speed/torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source unverter, and TMS320C31 DSP controller. The stator flux observer is based on the combined voltage and current model with stator flux feedback adapitve control that inputs are the compensated inductances, current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor position is estimated rotor speed is determined by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operation area. It does not requrie the knowledge of any montor paramenters, nor particular care for moter starting, In order to prove the suggested control algorithm, we have simulation and testing at actual experimental system. The developed sensorless control system is showing a good speed control response characterisitic result and high performance features in 20/1500 rpm with 1.0Kw RSM having 2.57 ratio of d/q reluctance.

A Position Sensorless Motion Control System of Reluctance Synchronous Motor with Direct Torque Control (직접토크제어에 의한 위치센서 없는 리럭턴스 동기전동기의 위치제어 시스템)

  • Kim, Min-Huei;Lee, Bok-Yong;Kim, Kyung-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.135-141
    • /
    • 2002
  • This paper presents an implementation of high-dynamic performance of position sensorless motion control system of Reluctance Synchronous Motor(RSM) drives for an industrial servo system with direct torque control(DTC), The problems of DTC for high-dynamic performance and maximum efficiency RSM drive due to a saturated stator linkage flux and nonlinear inductance curve with various load currents, The accurate estimation of the stator flux and torque are obtained using stator flux observer of which a saturated inductance Ld and Lq can be compensated by adapting from measurable the modulus and angle of the stator current space vector. To obtain fast torque response and maximum torque/current with varying load current, the reference command flux is ensured by imposing Ids=Iqs. This control strategy is proposed to fast response and optimal efficiency for RSM drive. In order to prove rightness of the suggested control algorithm, the actual experiment carried out at ${\pm}$20 and ${\pm}$1500 rpm. The developed digitally high-performance control system are shown some good response characteristic of control results and high performance features using 1.0kW RSM of which has 2.57 Ld/Lq salient ratio.

  • PDF

A Novel Position Sensorless Speed Control Scheme for Permanent Magnet Synchronous Motor Drives (영구자석 동기전동기의 센서리스 속도제어 시스템)

  • Won, Tae-Hyun;Park, Han-Woong;Song, Dall-Sup;Kim, Moon-Soo;Lee, Man-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.112-116
    • /
    • 2002
  • A sensorless control strategy for permanent magnet synchronous motors is presented in this paper. A speed control scheme based on the measurement and observation of stator current, voltage. and flux vector is proposed. Two phase voltages and two stator currents are measured and processed in discrete form in DSP. The rotor position and speed are estimated through the stator flux and its derivative estimation. Flux and its derivative are calculated in the stationary reference frame and used to estimate the speed and position. The rotor position angle is then used in a microcontroller to produce the appropriate stator current command signals for the hysteresis current controller of the inverter. The closed-loop speed control has been shown to be effective from standstill to rated speed. Moreover, a flux drift problem caused by the integration can be eliminated so that a stable sensorless starting and running operation can be achieved. Computer simulation and experimental results are presented to demonstrate the effectiveness of the proposed scheme.

  • PDF

Modeling and Experimental Verification of ANN Based Online Stator Resistance Estimation in DTC-IM Drive

  • Reza, C.M.F.S.;Islam, Didarul;Mekhilef, Saad
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.550-558
    • /
    • 2014
  • Direct Torque controlled induction motor (DTC-IM) drives use stator resistance of the motor for stator flux estimation. So, stator resistance estimation properly is very important for a stable and effective operation of the induction motor. Stator resistance variations because of changing in temperature make DTC operation difficult mainly at low speed. A method based on artificial neural network (ANN) to estimate the stator resistance online of IM for DTC drive is modeled and verified in this paper. To train the neural network a back propagation algorithm is used. Weight adjustment of neural network is done by back propagating the error signal between measured and estimated stator current. An extensive simulation has been carried out in MATLAB/SIMULINK to prove the efficacy of the proposed stator resistance estimator. The simulation & experimental result reveals that proposed method is able to obtain precise torque and flux control at low speed.

풍력발전을 위한 이중여자 유도기의 센서리스 제어

  • 김용현;김일환
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.5
    • /
    • pp.451-458
    • /
    • 2000
  • In wind power generating system connected in power grid, the value of stator flux has almost constant because the stator side of doubly fed induction machine(DFIM) is connected to power grid. Using the stator and rotor current, it is possible to estimate the slip angle and rotor speed. A stator flux orientation scheme and rotor slip estimator are employed to achieve control of generating power in stator side. To verify the theoretical analysis, a 5-hp DFIM prototype system and PWM power converter are built. Results of computer simulation and experiment are presented to support the discussion.

  • PDF