• 제목/요약/키워드: Stator Current

검색결과 683건 처리시간 0.024초

고정자 자속 추정과 PLL을 이용한 동기모터의 센서리스 속도 제어 (Sensorless Speed Control of PMSM using Stator Flux Estimation and PLL)

  • 김민호;양오
    • 반도체디스플레이기술학회지
    • /
    • 제14권2호
    • /
    • pp.35-40
    • /
    • 2015
  • This paper presents the sensorless position control of the Permanent Magnet Synchronous Motor (PMSM) using stator flux estimation and Phase Lock Loop (PLL). The field current and the torque current are required in order to perform the vector control of the PMSM. At this time, it is necessary for the torque to know the exact position of the magnetic flux generated by the permanent magnet, because the torque must be applied torque current in the direction orthogonal to the permanent magnet. In general the speed of the PMSM is controlled by using a magnetic position sensor. However, this paper, we estimates the stator flux by using the PLL method without the magnetic position sensor. This method is simple and easy, in addition it has the advantage of a stabile estimation of the rotor. Finally the proposed algorithm was confirmed by experimental results and showed the good performance.

고정자 절연파괴 비선형 모델링을 이용한 매입형 영구자석 전동기의 고장분석 (Fault Analysis of IPM type BLDC Motor Using Nonlinear Modeling of Stator Inter Turn Faults)

  • 김경태;허진
    • 전기학회논문지
    • /
    • 제60권3호
    • /
    • pp.531-537
    • /
    • 2011
  • This paper proposes a finite element method (FEM)-based model of an interior permanent magnet (IPM) type BLDC motor having stator inter-turn faults. For more realistic simulation studies, the magnetic non-linearity is also considered in proposed model. And the simulation data are verified through experiment. By integrating the developed model with a current-controlled voltage source inverter (CCVSI) model, the characteristics of an inter-turn fault operated by six-switched inverter are investigated considering the speed control. And the circulating current, which is induced by magnetic linkage flux originated from PM, was analyzed from the view point of distortion of air-gap magnetic flux distribution caused deterioration of their torque.

A High-Performance Sensorless Control System of Reluctance Synchronous Motor with Direct Torque Control

  • Kim Min-Huei;Kim Nam-Hun;Choi Kyeong-Ho;Kim Dong-Hee;Hwang Dong-Ha
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.355-359
    • /
    • 2001
  • This paper presents an implementation of digital control system of speed sensorless for Reluctance Synchronous Motor (RSM) drives with DTC. The control system consists of stator flux observer, rotor position/speed/torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source inverter, and TMS320C31 DSP controller by using fully integrated control software. The stator flux observer is based on the combined voltage and current model with stator flux feedback adaptive control that inputs are current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor position is estimated by observed stator flux-linkage space vector. The estimated rotor speed is determined by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operating area. It does not require the knowledge of any motor parameters, nor particular care for motor starting, In order to prove the suggested control algorithm, we have a simulation and testing at actual experimental system. The developed sensorless control system is shown a good speed control response characteristic results and high performance features in 50/1000 rpm with 1.0Kw RSM having 2.57 ratio of d/q reluctance.

  • PDF

LabVIEW를 이용한 유도전동기 고정자 권선 고장진단시스템 (Stator winding faults diagnosis system of induction motor using LabVIEW)

  • 송명현;박규남;이태훈;한동기;박경한
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 D
    • /
    • pp.2658-2660
    • /
    • 2005
  • This paper presents a stator winding fault diagnosis technique of induction motor on the PC - based virtual instrumentation system designed using the graphical programming language LabVIEW. This method collects the 3-phase current signals using the current probe amplifier and PXI/DAQ system then the preprocessing removes the noise using LPF, after then this method transforms the stator current to Park's vector and obtains the each Park's Vector pattern and detects stator winding fault by comparing the obtained faulted pattern with the healthy pattern. This proposed LabVIEW based diagnosis system is applied to the 3 phase 1 hp induction motor and obtained the reasonable results under no load condition. The test results give us the possibility a simple and realistic on-line winding fault diagnosis system.

  • PDF

전류위상 변화 시 고정자 권선방법에 따른 이중 3상 영구자석 동기 전동기의 특성 해석 (The Characteristics Analysis of a PMSM with Current Angle Variations according to Stator Winding Arrangements)

  • 김태형
    • 전기전자학회논문지
    • /
    • 제24권2호
    • /
    • pp.441-445
    • /
    • 2020
  • 효율 및 제어성이 우수한 영구자석 전동기는 최근 자동차 조향장치 시스템용으로 많이 응용되고 있으며, 인버터 고장 발생 시에도 일정시간 운전이 가능하여 안전성과 신뢰성을 확보할 수 있도록 다양한 형태의 이중 3상 구조의 고정자 권선방법을 적용하고 있다. 본 논문에서는 진상 및 지상의 전류위상 변화 시 각각의 권선방법이 전동기 특성에 미치는 영향을 유한요소해석을 통해 분석하고, 그 결과 이중 3상 고정자 권선을 갖는 동기전동기 설계 시 특성 측면에서 가장 적절한 권선방법을 선정할 수 있도록 설계전략을 제시한다. 구체적으로 토크 및 효율 측면과 약계자 제어를 통한 정출력 영역 확대 측면, 그리고 저진동 및 저소음을 위한 토크 리플 저감 측면에서 각각 유리한 권선방법을 제시한다.

A High-Performnce Sensorloss Control System of Reluctance Synchronous Motor with Direct Torque Control by Consideration of Nonlinerarly Inductances

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik
    • Journal of Power Electronics
    • /
    • 제2권2호
    • /
    • pp.146-153
    • /
    • 2002
  • this paper presents an implementation of digital control system of speed sensorless for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The problem of DTC for high-dynamic performance RSM drive is generating a nonlinear torque due to a saturated nonlinear inductance curve with various load currents. The control system consists of stator flux observer, compensating inductance look-up table, rotor position/speed/torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source unverter, and TMS320C31 DSP controller. The stator flux observer is based on the combined voltage and current model with stator flux feedback adapitve control that inputs are the compensated inductances, current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor position is estimated rotor speed is determined by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operation area. It does not requrie the knowledge of any montor paramenters, nor particular care for moter starting, In order to prove the suggested control algorithm, we have simulation and testing at actual experimental system. The developed sensorless control system is showing a good speed control response characterisitic result and high performance features in 20/1500 rpm with 1.0Kw RSM having 2.57 ratio of d/q reluctance.

직접토크제어에 의한 위치센서 없는 리럭턴스 동기전동기의 위치제어 시스템 (A Position Sensorless Motion Control System of Reluctance Synchronous Motor with Direct Torque Control)

  • 김민회;이복용;김경식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.135-141
    • /
    • 2002
  • This paper presents an implementation of high-dynamic performance of position sensorless motion control system of Reluctance Synchronous Motor(RSM) drives for an industrial servo system with direct torque control(DTC), The problems of DTC for high-dynamic performance and maximum efficiency RSM drive due to a saturated stator linkage flux and nonlinear inductance curve with various load currents, The accurate estimation of the stator flux and torque are obtained using stator flux observer of which a saturated inductance Ld and Lq can be compensated by adapting from measurable the modulus and angle of the stator current space vector. To obtain fast torque response and maximum torque/current with varying load current, the reference command flux is ensured by imposing Ids=Iqs. This control strategy is proposed to fast response and optimal efficiency for RSM drive. In order to prove rightness of the suggested control algorithm, the actual experiment carried out at ${\pm}$20 and ${\pm}$1500 rpm. The developed digitally high-performance control system are shown some good response characteristic of control results and high performance features using 1.0kW RSM of which has 2.57 Ld/Lq salient ratio.

  • PDF

영구자석 동기전동기의 센서리스 속도제어 시스템 (A Novel Position Sensorless Speed Control Scheme for Permanent Magnet Synchronous Motor Drives)

  • 원태현;박한웅;송달섭;김문수;이만형
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계합동학술대회 논문집
    • /
    • pp.112-116
    • /
    • 2002
  • A sensorless control strategy for permanent magnet synchronous motors is presented in this paper. A speed control scheme based on the measurement and observation of stator current, voltage. and flux vector is proposed. Two phase voltages and two stator currents are measured and processed in discrete form in DSP. The rotor position and speed are estimated through the stator flux and its derivative estimation. Flux and its derivative are calculated in the stationary reference frame and used to estimate the speed and position. The rotor position angle is then used in a microcontroller to produce the appropriate stator current command signals for the hysteresis current controller of the inverter. The closed-loop speed control has been shown to be effective from standstill to rated speed. Moreover, a flux drift problem caused by the integration can be eliminated so that a stable sensorless starting and running operation can be achieved. Computer simulation and experimental results are presented to demonstrate the effectiveness of the proposed scheme.

  • PDF

Modeling and Experimental Verification of ANN Based Online Stator Resistance Estimation in DTC-IM Drive

  • Reza, C.M.F.S.;Islam, Didarul;Mekhilef, Saad
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.550-558
    • /
    • 2014
  • Direct Torque controlled induction motor (DTC-IM) drives use stator resistance of the motor for stator flux estimation. So, stator resistance estimation properly is very important for a stable and effective operation of the induction motor. Stator resistance variations because of changing in temperature make DTC operation difficult mainly at low speed. A method based on artificial neural network (ANN) to estimate the stator resistance online of IM for DTC drive is modeled and verified in this paper. To train the neural network a back propagation algorithm is used. Weight adjustment of neural network is done by back propagating the error signal between measured and estimated stator current. An extensive simulation has been carried out in MATLAB/SIMULINK to prove the efficacy of the proposed stator resistance estimator. The simulation & experimental result reveals that proposed method is able to obtain precise torque and flux control at low speed.

풍력발전을 위한 이중여자 유도기의 센서리스 제어

  • 김용현;김일환
    • 전력전자학회논문지
    • /
    • 제5권5호
    • /
    • pp.451-458
    • /
    • 2000
  • 이중여자 유도기를 계통선 연계형 풍력발전 시스템에 적용할 때, 고정자는 계통선에 그리고 회전자는 제어 시스템에 연결된다. 이때 고정자에는 일정전압과 주파수가 걸리기 때문에, 고정자측에 는 거의 일정한 고정자 자속값을 갖는다. 또한 고정자 자속을 기준으로 고정자 전류와 회전자 전류를 이용하여 슬립각을 추정하고, 이를 이용하여 고정자측에 출력되는 전력을 제어한다. 제안한 알고리즘의 타당성을 검증하기 위해 컴퓨터 시뮬레이션과 실험을 통하여 이를 입증한다.

  • PDF