• 제목/요약/키워드: Static-dynamic stiffness model

검색결과 158건 처리시간 0.025초

섀시 프레임 상의 바디 마운트계의 진동해석 (Vibration Analysis of Body Mount System on Chassis Frame)

  • 이창노;류봉조
    • 한국자동차공학회논문집
    • /
    • 제18권2호
    • /
    • pp.141-146
    • /
    • 2010
  • This paper describes the static and dynamic characteristics of body mount system which are to be considered in the early design stage. At every location of body mount the static load and dynamic response to road input were calculated using the half car model. Normal mode analysis for the half car model was also performed. In the analysis the design parameters such as the stiffness of mount rubbers and their distribution on mount location were examined for improving ride comfort especially in the lower frequency range.

가변강성 액추에이터의 원리에 대한 비교 실험 연구 (Experimental Study on Different Principles of Variable Stiffness Actuators)

  • 백규열;김현규;서태원
    • 한국정밀공학회지
    • /
    • 제32권12호
    • /
    • pp.1049-1054
    • /
    • 2015
  • Nowadays, there are many researches involving structural actuators, which have adjustable stiffness; they are also called variable stiffness actuators (VSA). The VSAs can adjust the characteristics of actuators for various functions and human-machine safety. This paper describes the design and analysis of two types of VSAs. To adjust stiffness, the actuators are controlled by a principle of lever ratio mechanism, by changing a pivot position or a spring position in the structure with springs. To make the principle workable, the designs are simplified by using a ball screw system with a motor. Each structure shows different static properties with variable rates of stiffness. We have also shown the experimental verification of the dynamic performance of the two types of VSAs. This research can be applied to various industrial fields, where humans work in conjunction with robots.

모드해석을 이용한 L, T 자형 구조물의 결합 강성 평가 방법에 대한 연구 (The Study of Stiffness Evaluation Technique for L, T Shaped Joint Structures Using Normal Modes Analysis with Lumped Mass)

  • 허덕재;정재엽;조연;박태원
    • 소음진동
    • /
    • 제9권5호
    • /
    • pp.975-983
    • /
    • 1999
  • This paper describes the dynamic characteristics of the joint structures in case of using the simplified beam model in the F. E. analysis. The modeling errors, when replace the shell with the beam, are investigated through F. E. normal modes analysis. Normal mode analysis were performed to obtain the natural frequencies of the L and T shaped joints with various type of channels. The results were analyzed to access the effects of the models on the accuracy of F.E. analysis by identifying the geometric factors which cause the error. The geometric factors considered are joint angle, channel length, thickness and area ratio of the hollow section to the filled one. The joint stiffness evaluation technique is developed in this study using normal modes analysis with Lumped Mass. With this method, the progressively improved results of F. E. analysis are obtained using the simplified beam model. The static and normal modes analysis are performed with the joint stiffness values obtained by the Kazunori Shimonkakis' virtual stiffness method and the proposed method and these simplified modeling errors are compared.

  • PDF

봉정사 대응전의 지진응답 특성 (Seismic Response Characteristics of the Main Building of Bongjeong Temple)

  • 주석준;홍성걸;김남희;이영욱;정성진;황종국
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.235-240
    • /
    • 2007
  • For the identification of the 3 dimensional dynamic characteristics of the Bongjeong Temple, the dynamic test for 1/3 scaled model was performed. Dynamic test with impulse excitation and vibration table excitation can provide useful data for the estimation of dynamic characteristics such as natural frequencies, damping ratios, mode shapes and stiffness center. This will complement the previous research from the 2-dimensional static test and provide the reference data for the enhanced structural analysis of the traditional wooden structures.

  • PDF

연삭기용 자기베어링 주축계의 고속화에 관한 연구 (Design of a Magnetic Bearing System for a High Speed Grinding Spindle)

  • 박종권;노승국;안대균
    • 한국정밀공학회지
    • /
    • 제15권11호
    • /
    • pp.233-243
    • /
    • 1998
  • The demand of high speed machining is increasing due to the high speed cutting and grinding provides high efficiency of process, short process time, improved metal removal capacity and better surface finish. Active magnetic bearings allow much high surface speed than conventional ball bearings and therefore greatly suitable for high speed cutting or grinding. This paper describes a design process of an active magnetic bearing system for a high speed grinding spindle with power 5.5kW and maximum speed 60,000rpm. Magnetic actuators are designed by the magnetic circuit theory considering static load condition, and examined with FEM analysis. Dynamic characteristics are also considered, such as bandwidth, stiffness, natural frequency and static deflection. System characteristics are simulated with a rigid rotor model.

  • PDF

고속 전동기용 무급유 포일 저널 베어링 구조체의 하중지지 및 진동 특성 규명 (Identification of Load Carrying and Vibration Characteristics of Oil-Free Foil Journal Bearing Structures for High Speed Motors)

  • 백두산;황성호;김태호
    • Tribology and Lubricants
    • /
    • 제37권6호
    • /
    • pp.261-272
    • /
    • 2021
  • This study investigates the structural characteristics of oil-free, gas beam foil journal bearings (GBFJBs) for use in high speed motors. Mathematical modeling was carried out, and reaction force modeling for static load was performed to predict the structural characteristics of the GBFJB. Mathematical modeling and reaction force modeling for static load are performed to predict the structural characteristics of GBFJBs. The reaction force of the test bearing against static loads was measured during experiments and compared with the predicted results. The measured experimental data reveal the nonlinear stiffness characteristics of the GBFJB against varying displacement and agree well with the predictions. Dynamic load tests using an exciter allow to identify the vibration characteristics of the GBFJB. Test results show that the vibration displacement, dynamic force, and acceleration measured on the test bearing are most dominant at the applied dynamic load (synchronization) frequency. Futhermore, the test results show that the hysteresis area recorded during the dynamic tests increases with the excitation amplitude and frequency, and that the beam stick phenomena occurr at high excitation frequencies. The single degree of freedom (DOF) vibration model aids to identify the stiffness and damping coefficient of the GBFJB, which decrease as the excitation frequency increases.

Analytical solution for natural frequency of monopile supported wind turbine towers

  • Rong, Xue-Ning;Xu, Ri-Qing;Wang, Heng-Yu;Feng, Su-Yang
    • Wind and Structures
    • /
    • 제25권5호
    • /
    • pp.459-474
    • /
    • 2017
  • In this study an analytical expression is derived for the natural frequency of the wind turbine towers supported on flexible foundation. The derivation is based on a Euler-Bernoulli beam model where the foundation is represented by a stiffness matrix. Previously the natural frequency of such a model is obtained from numerical or empirical method. The new expression is based on pure physical parameters and thus can be used for a quick assessment of the natural frequencies of both the real turbines and the small-scale models. Furthermore, a relationship between the diagonal and non-diagonal element in the stiffness matrix is introduced, so that the foundation stiffness can be obtained from either the p-y analysis or the loading test. The results of the proposed expression are compared with the measured frequencies of six real or model turbines reported in the literature. The comparison shows that the proposed analytical expression predicts the natural frequency with reasonable accuracy. For two of the model turbines, some errors were observed which might be attributed to the difference between the dynamic and static modulus of saturated soils. The proposed analytical solution is quite simple to use, and it is shown to be more reasonable than the analytical and the empirical formulas available in the literature.

콘크리트슬래브궤도 체결장치의 패드강성에 따른 궤도/교량의 거동 분석 (The Behaviour of Track/Railway Bridge according to Pad Stiffness of Fastener System on Concrete Slab Track)

  • 이준호;성덕룡;박용걸;김성일
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.1628-1636
    • /
    • 2008
  • Construction of concrete slab track is trending to increase gradually in national and international for reduction in track maintenance cost and secure of ride comfort. But elastic pad becomes superannuated due to repeated train operation. After all, it brings change of pad stiffness and it could directly act on track and bridge as load transmission and impact force. In this study, we carried out laboratory test changing pad stiffness after making a model of 15m bridge and laying concrete slab track. Also, we carried out static and dynamic behaviors test(stress, natural frequency, damping ratio, vibrational acceleration, deflection) of bridge and track and experimentally analyzed them by change of elastic pad stiffness on rail fastener.

  • PDF

원통형 스프링의 동특성 해석을 위한 헬리컬 로드 유한요소 개발 (Development of Helical Rod Finite Element for the Dynamic Analysis of Cylindrical Springs)

  • 김도중;이덕영
    • 소음진동
    • /
    • 제9권3호
    • /
    • pp.544-553
    • /
    • 1999
  • A 3-dimensional helical rod finite element is devloped for the dynamic analysis of cylindrical springs. Element matrices are formulated using the Galerkin's method, and an exact static deflection curve is used as a shape function. Because the resultant mass and stiffness matrices of the model are symmetric, effective direct solution method can easily be applied for analysing dynamic behavior of springs. The model is used to analyze the dynamic characteristics of a typical automotive valve spring. The effectiveness of the developed helical rod element is verified by comparing the results of the proposed method with those of a classical theory and experiments. The helical element developed in this study is superior to a straight beam element and a 2-dimensional curved beam element for this problem.

  • PDF

등가 코너링강성을 사용한 차량의 조종안정성에 대한 민감도 해석 (Application of Sensitivity Analysis to Vehicle Handling with Equivalent Cornering Stiffness)

  • 이창노
    • 한국산학기술학회논문지
    • /
    • 제13권4호
    • /
    • pp.1434-1439
    • /
    • 2012
  • 차량은 여러 가지 설계변수가 결합된 동적계이다. 차량의 운동특성은 이러한 설계변수의 변화에 따라 변하게 된다. 설계변수의 조종안정성에 대한 영향을 파악하기 위하여 현가장치나 조향장치 특성이 포함된 등가코너링강성을 고려한 차량의 조종안정성 모델에 대하여 수치해법에 의한 민감도 해석을 수행하였다. 민감도 해석결과로부터 차량설계변수인 무게중심위치, 타이어 코너링특성, 현가장치 및 조향장치의 특성의 변화에 대한 정상상태이득, 스테빌리티 팩타, 주파수응답 등 차량 조종안정성의 변화율을 파악할 수 있었다. 또한 민감도 해석은 정성적이고 정량적인 결과를 제공하므로 설계단계는 물론 차량개발단계에서도 차량의 성능향상을 위한 설계변수들의 최적화에 사용될 수 있다.