• 제목/요약/키워드: Static tensile loading

검색결과 127건 처리시간 0.032초

경사말뚝의 동적거동과 내진성능 향상을 위한 실험적 고찰 (Dynamic Analysis of Inclined Piles and Countermeasures against their Vulnerability)

  • 김재홍;황재익;김성렬;김명모
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.107-114
    • /
    • 2001
  • When group pile supporting structures are to be subjected to large lateral loads, generally, hatter piles are used in group pile with vertical piles. It is well known that batter piles resist lateral static loads which are acted upon the piles as axial farces quite well but, they show a poor performance under seismic loads. However, it is not yet known how the batter piles behave under dynamic loading and how to strengthen the batter piles to improve the seismic performance. Shaking table tests were performed to investigate the seismic behavior of the batter pile and to bring up the countermeasures to improve the seismic performance. As the result of the shaking table tests, batter piles failed due to not only the excessive increase of compressive force near the pile head but also that of tensile force. In case that the pile head was connected with pile cap by rubber joint, the max. acceleration at the pile cap was reduced due to the high damping ratio of rubber and the max. moment and max. axial farce at the pile head was decreased remarkably. When the inclinations(V:H) of the batter pile were 8:3 and 8:4, max. moment, max. shear force, and max. axial farce were reduced notably and max. acceleration and max. displacement at the pile cap was diminished, too.

  • PDF

강판항(鋼板桁) 덮개판 형상에 따른 피로균열성장특성 (Fatigue Crack Growth Characteristics by the Cover Plate Shapes in the Steel Plate Girder)

  • 정영화;김익겸;정진석;이형근
    • 산업기술연구
    • /
    • 제19권
    • /
    • pp.269-278
    • /
    • 1999
  • When a variety of repeated loads are given, most steel structures failed in much lower level of loads than static failure loads. In addition, bridge always includes the internal defects or discontinuities. from these, fatigue cracks initiates and can lead to sudden failure. Thus, in this study, tensile specimens by the cover plate shapes were used as the test specimens. The fatigue test was performed by constant amplitude fatigue loading and beach mark. From the results of this study, each specimen's fatigue section was observed. in addition, stress intensity factor at crack tip was calculated by using the Green's function which applied to discontinuous section where causing stress concentration. Therefore, the fatigue life of structural detail was investigated by adopting the theories of fracture mechanics. each specimen's crack shape is a semi-elliptical surface crack or center crack sheet, stress gradient correction factor, Fg is the most subjective of all stress intensity correction factors and fatigue life should be predicted by previous proposed function and finite element analysis.

  • PDF

High performance fibre reinforced cement concrete slender structural walls

  • Ganesan, N.;Indira, P.V.;Seena., P.
    • Advances in concrete construction
    • /
    • 제2권4호
    • /
    • pp.309-324
    • /
    • 2014
  • In the design of reinforced concrete structural walls, in order to ensure adequate inelastic displacement behaviour and to sustain deformation demands imposed by strong ground motions, special reinforcement is considered while designing. However, these would lead to severe reinforcement congestion and difficulties during construction. Addition of randomly distributed discrete fibres in concrete improves the flexural behaviour of structural elements because of its enhanced tensile properties and this leads to reduction in congestion. This paper deals with effect of addition of steel fibres on the behavior of high performance fibre reinforced cement concrete (HPFRCC) slender structural walls with the different volume fractions of steel fibres. The specimens were subjected to quasi static lateral reverse cyclic loading until failure. The high performance concrete (HPC) used was obtained based on the guidelines given in ACI 211.1 which was further modified by prof.Aitcin (1998). The volume fraction of the fibres used in this study varied from 0 to 1% with an increment of 0.5%. The results were analysed critically and appraised. The study indicates that the addition of steel fibres in the HPC structural walls enhances the first crack load, strength, initial stiffness and energy dissipation capacity.

Hill48 이차 항복식을 이용한 변형률 속도에 따른 수정된 항복곡면의 구성 (Construction of Modified Yield Loci with Respect to the Strain Rates using Hill48 Quadratic Yield Function)

  • 이창수;배기현;김석봉;허훈
    • 한국자동차공학회논문집
    • /
    • 제18권2호
    • /
    • pp.56-60
    • /
    • 2010
  • Since the forming process involves the strain rate effect, a yield function considering the strain rate is indispensible to predict the accurate final blank shape in the forming simulation. One of the most widely used in the forming analysis is the Hill48 quadratic yield function due to its simplicity and low computing cost. In this paper, static and dynamic uni-axial tensile tests according to the loading direction have been carried out in order to measure the yield stress and the r-value. Based on the measured results, the Hill48 yield loci have been constructed, and their performance to describe the plastic anisotropy has been quantitatively evaluated. The Hill48 quadratic yield function has been modified using convex combination in order to achieve accurate approximation of anisotropy at the rolling and transverse direction.

주름이 있는 삼각형 태양돛의 동적해석 (Dynamic Response of Triangular Solar Sail with Wrinkles)

  • 배홍수;우경식
    • 한국항공우주학회지
    • /
    • 제43권3호
    • /
    • pp.195-203
    • /
    • 2015
  • 본 논문에서는 유한요소해석을 통하여 삼각형 태양돛에 대하여 동적거동을 연구하였다. 동적해석은 삼각형 태양돛 멤브레인에 인장하중이 가해졌을 때 발생되는 주름해석을 수행한 후, 이 상태에서 인장하중을 고정하고 모달해석을 수행하였다. 해석에서 주름 알고리즘을 채용한 멤브레인 요소법과 쉘 요소법의 두 가지 방법을 사용하였으며, 그 결과들을 수방법론적 관점에서 비교분석하였다. 주름을 고려하지 않은 경우에 대해서도 해석을 수행하여 동적특성 결과를 주름을 고려한 경우와 비교하였으며, 케이블 각도에 따른 영향에 대하여 체계적으로 조사하였다.

The influence of strengthening the hollow steel tube and CFST beams using U-shaped CFRP wrapping scheme

  • Zand, Ahmed W. Al;Hosseinpour, Emad;Badaruzzaman, Wan Hamidon W.
    • Structural Engineering and Mechanics
    • /
    • 제66권2호
    • /
    • pp.229-235
    • /
    • 2018
  • This study investigated the behaviour of the simply supported hollow steel tube (HST) beams, either concrete filled or unfilled when strengthened with carbon fibre reinforced polymer (CFRP) sheets. Eight specimens with varied tubes thickness (sections classification 1 and 3) were all tested experimentally under static flexural loading, four out of eight were filled with normal concrete (CFST beams). Particularly, the partial CFRP strengthening scheme was used, which wrapped the bottom-half of the beams cross-section (U-shaped wrapping), in order to use the efficiency of high tensile strength of CFRP sheets at the tension stress only of simply supported beams. In general, the results showed that the CFRP sheets significantly improved the ultimate strength and energy absorption capacities of the CFST beams with very limited improvement on the related HST beams. For example, the load and energy absorption capacities for the CFST beams (tube section class 1) were increased about 20% and 32.6%, respectively, when partially strengthened with two CFRP layers, and these improvements had increased more (62% and 38%) for the same CFST beams using tube class 3. However, these capacities recorded no much improvement on the related unfilled HST beams when the same CFRP strengthening scheme was adopted.

고강도 콘크리트 크리프 및 건조수축 특성을 위한 재료실험 (Concrete Test for Creep and Shrinkage Properties on High Strength Concrete)

  • 차한일;문형재;석원균;박순전
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.857-860
    • /
    • 2008
  • 본 연구는 잠실제2롯데월드에 적용된 50, 60, 70MPa 콘크리트 강도에 대한 크리프 및 건조수축 특성 파악을 위한 재료연구의 일환으로 진행된 콘크리트 테스트 프로그램의 준비 단계에 대한 일련의 체계화된 과정을 나타내고 있다. 콘크리트 테스트 프로그램의 준비단계는 국내와 국외에서 진행되었다. S사 실험실에서 진행된 국내 진행일정은 총 5일간 진행되었으며 그 진행과정은 공시체 제작, 몰드탈형, 공시체 마킹, 수중양생, 포장, 및 운송으로 이루어져 있다. 국외에서는 PCA(Portland Cement Association)산하 CTL사에서 진행되고 있으며 테스트 항목은 탄성계수 측정테스트(정탄성 & 동탄성), 압축강도 테스트, 크리프 건조수축 테스트, 및 할렬인장강도 테스트가 진행되고 있다. 크리프 및 건조수축 실험의 경우에는 하중 재령일에 따라 총 18개월간 테스트가 진행될 예정이다.

  • PDF

Three-dimensional finite element simulation and application of high-strength bolts

  • Long, Liji;Yan, Yongsong;Gao, Xinlin;Kang, Haigui
    • Steel and Composite Structures
    • /
    • 제20권3호
    • /
    • pp.501-512
    • /
    • 2016
  • High-strength structural bolts have been utilized for beam-to-column connections in steel-framed structural buildings. Failure of these components may be caused by the bolt shank fracture or threads stripping-off, documented in the literature. Furthermore, these structural bolts are galvanized for corrosion resistance or quenched-and-tempered in the manufacturing process. This paper adopted the finite element simulation to demonstrate discrete mechanical performance for these bolts under tensile loading conditions, the coated and uncoated numerical model has been built up for two numerical integration methods: explicit and implicit. Experimental testing and numerical methods can fully approach the failure mechanism of these bolts and their ultimate load capacities. Comparison has also been conducted for two numerical integration methods, demonstrating that the explicit integration procedure is also suitable for solving quasi-static problems. Furthermore, by using precise bolt models in T-Stub, more accurately simulate the mechanical behavior of T-Stub, which will lay the foundation of the mechanical properties of steel bolted joints.

변형률속도 변화에 따른 INCONEL 718 초내열합금의 동적 물성특성 (Dynamic Material Characteristics of Superalloy INCONEL 718 with the Variation of Strain Rates)

  • 송정한;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.275-278
    • /
    • 2005
  • INCONEL 718, nickel based superalloy, has good formability, high strength, excellent corrosion resistance and mechanical properties at high temperature. Owing to theses attractive properties, it finds use in applications such as combustion system, turbine engines and nuclear reactors. In such applications, components are typically required to be tolerant of high stress impact loading. This may cause material degradation and lead to catastrophic failure during service operation. In order to design optimal structural parts made of INCONEL 718, accurate understanding of material's mechanical properties, dynamic behavior and fracture characteristic as a function of strain rates are required. This paper concerned with the dynamic material properties of the INCONEL 718 for the various strain rates. The dynamic response of the INCONEL 718 at intermediate strain rate is obtained from the high speed tensile test machine test and at the high strain rate is from the split Hopkinson pressure bar test. Based on the experimental results, the effects of strain rate on dynamic flow stress, work hardening characteristics, strain rate sensitivity and elongation to the failure are evaluated. Experimental results from both quasi-static and high strain rate up to the 5000/sec are interpolated in order to construct the Johnson-Cook model as the constitutive relation that should be applied to simulate and design the structural parts made of INCONEL 718.

  • PDF

변형률속도 변화에 따른 INCONEL 718 초내열합금의 동적 물성특성 (Dynamic Material Characteristics of Superalloy INCONEL 718 with the Variation of Strain Rates)

  • 송정한;허훈
    • 소성∙가공
    • /
    • 제14권6호
    • /
    • pp.559-564
    • /
    • 2005
  • INCONEL 718, nickel based superalloy, has good formability, high strength, excellent corrosion resistance and mechanical properties at high temperature. Owing to theses attractive properties, it is utilized in applications such as combustion system, turbine engines and nuclear reactors. In such applications, components are typically required to be tolerant of high stress impact loading. This may cause material degradation and lead to catastrophic failure during service operation. Accurate understanding of material's mechanical properties with various strain rates is required in order to guarantee the reliability of structural parts made of INCONEL 718. This paper is concerned with the dynamic material properties of the INCONEL 718 at various strain rates. The dynamic response of the INCONEL 718 at the intermediate strain rate is obtained from the high speed tensile test and at the high strain rate is from the split Hopkinson pressure bar test. The effect of the strain rate on dynamic flow stress, work hardening characteristics, strain rate sensitivity and elongation to the failure is evaluated with the experimental results. Experimental results from both the quasi-static and the high strain rate up to 5000/sec are interpolated in order to construct the Johnson-Cook model as the constitutive relation that should be applied to simulate and design the structural parts made of rNCONEL 718.