• Title/Summary/Keyword: Static series compensator

Search Result 56, Processing Time 0.021 seconds

A Novel DC Bus Voltage Balancing of Cascaded H-Bridge Converters in D-SSSC Application

  • Saradarzadeh, Mehdi;Farhangi, Shahrokh;Schanen, Jean-Luc;Frey, David;Jeannin, Pierre-Olivier
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.567-577
    • /
    • 2012
  • This paper introduces a new scheme to balance the DC bus voltages of a cascaded H-bridge converter which is used as a Distribution Static Synchronous Series Compensator (D-SSSC) in electrical distribution network. The aim of D-SSSC is to control the power flow between two feeders from different substations. As a result of different cell losses and capacitors tolerance the cells DC bus voltage can deviate from their reference values. In the proposed scheme, by individually modifying the reference PWM signal for each cell, an effective balancing procedure is derived. The new balancing procedure needs only the line current sign and is independent of the main control strategy, which controls the total DC bus voltages of cascaded H-bridge. The effect of modulation index variation on the capacitor voltage is analytically derived for the proposed strategy. The proposed method takes advantages of phase shift carrier based modulation and can be applied for a cascaded H-bridge with any number of cells. Also the system is immune to loss of one cell and the presented procedure can keep balancing between the remaining cells. Simulation studies and experimental results validate the effectiveness of the proposed method in the balancing of DC bus voltages.

Coordinated Control of TCSC and SVC for System Damping Enhancement

  • So Ping Lam;Chu Yun Chung;Yu Tao
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.spc2
    • /
    • pp.322-333
    • /
    • 2005
  • This paper proposes a combination of the Thyristor Controlled Series Capacitor (TCSC) and Static Var Compensator (SVC) installation for enhancing the damping performance of a power system. The developed scheme employs a damping controller which coordinates measurement signals with control signals to control the TCSC and SVC. The coordinated control method is based on the application of projective controls. Controller performance over a range of operating conditions is investigated through simulation studies on a single-machine infinite-bus power system. The linear analysis and nonlinear simulation results show that the proposed controller can significantly improve the damping performance of the power system and hence, increase its power transfer capabilities. In this paper, a current injection model of TCSC is developed and incorporated in the transmission system model. By using equivalent injected currents at terminal buses to simulate a TCSC no modification of the bus admittance matrix is required at each iteration.

A Design of MGA-Pl Supplementary Controller in SVC for Power Oscillation Damping of HVDC Transmission System (초고압 직류송전 시스템의 전력 동요억제를 위한 정지형 무효전력 보상기에 MGA-PI 보조제어기 설계)

  • O, Tae-Gyu;Jeong, Hyeong-Hwan;Heo, Dong-Yeol;Lee, Jeong-Pil
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.7
    • /
    • pp.317-326
    • /
    • 2002
  • In this paper, a methodology for optimal PI supplementary controller using the modified genetic algorithm has been proposed to the oscillation damping in HDVC transmission system. These study processes are summarized as the formulation for load flow calculation in HVDC transmission system with SVC, the investigations on the basic control in HVDC system, the mathematical modeling for dynamic characteristics analyses, and the optimal design of MGA based PI controller generation the supplementary control signal of SVC. Its properties were verified through a series of computer simulations including dynamic stability. It means that the application of MGA-PI controller in HVDC transmission system can contribute the propriety to the improvement of the stability in HVDC transmission system and the design of MGA-OI controller has been proved indispensible when applied to HVDC transmission system.

Sensitivity Analysis of Power System Including Series FACTS Device Based on RCF Method (직렬형 FACTS 설비를 포함하는 전력시스템의 RCF 해석법에 기초한 감도해석)

  • Kim, Deok-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.3
    • /
    • pp.624-631
    • /
    • 2011
  • In this paper, the RCF method is used in sensitivity analysis problems of the discrete power systems including both series FACTS equipments such as TCSC in transmission lines and generator controllers such as Exciter and PSS in generator terminal. To apply the RCF method in small signal stability problems of discrete power systems, state transition equations of controllers and TCSC are derived and the sensitivity calculation algorithm using state transition equations in discrete time domain is devised. The results of eigenvalue analysis showed that the variations of eigenvalues after periodic switching operations of TCSC can be calculated exactly by the RCF method and the change of firing angles in TCSC have important effect to determine the stability of power systems.

MOBA based design of FOPID-SSSC for load frequency control of interconnected multi-area power systems

  • Falehi, Ali Darvish
    • Smart Structures and Systems
    • /
    • v.22 no.1
    • /
    • pp.81-94
    • /
    • 2018
  • Automatic Generation Control (AGC) has functionally controlled the interchange power flow in order to suppress the dynamic oscillations of frequency and tie-line power deviations as a perturbation occurs in the interconnected multi-area power system. Furthermore, Flexible AC Transmission Systems (FACTS) can effectively assist AGC to more enhance the dynamic stability of power system. So, Static Synchronous Series Compensator (SSSC), one of the well-known FACTS devices, is here applied to accurately control and regulate the load frequency of multi-area multi-source interconnected power system. The research and efforts made in this regard have caused to introduce the Fractional Order Proportional Integral Derivative (FOPID) based SSSC, to alleviate both the most significant issues in multi-area interconnected power systems i.e., frequency and tie-line power deviations. Due to multi-objective nature of aforementioned problem, suppression of the frequency and tie-line power deviations is formularized in the form of a multi-object problem. Considering the high performance of Multi Objective Bees Algorithm (MOBA) in solution of the non-linear objectives, it has been utilized to appropriately unravel the optimization problem. To verify and validate the dynamic performance of self-defined FOPID-SSSC, it has been thoroughly evaluated in three different multi-area interconnected power systems. Meanwhile, the dynamic performance of FOPID-SSSC has been accurately compared with a conventional controller based SSSC while the power systems are affected by different Step Load Perturbations (SLPs). Eventually, the simulation results of all three power systems have transparently demonstrated the dynamic performance of FOPID-SSSC to significantly suppress the frequency and tie-line power deviations as compared to conventional controller based SSSC.

Optimal Location of FACTS Devices Using Adaptive Particle Swarm Optimization Hybrid with Simulated Annealing

  • Ajami, Ali;Aghajani, Gh.;Pourmahmood, M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.179-190
    • /
    • 2010
  • This paper describes a new stochastic heuristic algorithm in engineering problem optimization especially in power system applications. An improved particle swarm optimization (PSO) called adaptive particle swarm optimization (APSO), mixed with simulated annealing (SA), is introduced and referred to as APSO-SA. This algorithm uses a novel PSO algorithm (APSO) to increase the convergence rate and incorporate the ability of SA to avoid being trapped in a local optimum. The APSO-SA algorithm efficiency is verified using some benchmark functions. This paper presents the application of APSO-SA to find the optimal location, type and size of flexible AC transmission system devices. Two types of FACTS devices, the thyristor controlled series capacitor (TCSC) and the static VAR compensator (SVC), are considered. The main objectives of the presented method are increasing the voltage stability index and over load factor, decreasing the cost of investment and total real power losses in the power system. In this regard, two cases are considered: single-type devices (same type of FACTS devices) and multi-type devices (combination of TCSC, SVC). Using the proposed method, the locations, type and sizes of FACTS devices are obtained to reach the optimal objective function. The APSO-SA is used to solve the above non.linear programming optimization problem for better accuracy and fast convergence and its results are compared with results of conventional PSO. The presented method expands the search space, improves performance and accelerates to the speed convergence, in comparison with the conventional PSO algorithm. The optimization results are compared with the standard PSO method. This comparison confirms the efficiency and validity of the proposed method. The proposed approach is examined and tested on IEEE 14 bus systems by MATLAB software. Numerical results demonstrate that the APSO-SA is fast and has a much lower computational cost.