• Title/Summary/Keyword: Static sensitivity

Search Result 270, Processing Time 0.023 seconds

Economic Evaluation of National Highway Construction Projects using Real Option Pricing Models (실물옵션 가치평가모형을 이용한 국도건설사업의 경제적 가치 평가)

  • Jeong, Seong-Yun;Kim, Ji-Pyo
    • International Journal of Highway Engineering
    • /
    • v.16 no.1
    • /
    • pp.75-89
    • /
    • 2014
  • PURPOSES : This study evaluates the economic value of national highway construction projects using Real Option Pricing Models. METHODS : We identified the option premium for uncertainties associated with flexibilities according to the future's change in national highway construction projects. In order to evaluate value of future's underlying asset, we calculated the volatility of the unit price per year for benefit estimation such as VOTS, VOCS, VICS, VOPCS and VONCS that the "Transportation Facility Investment Evaluation Guidelines" presented. RESULTS : We evaluated the option premium of underlying asset through a case study of the actual national highway construction projects using ROPM. And in order to predict the changes in the option value of the future's underlying asset, we evaluated the changes of option premium for future's uncertainties by the defer of the start of construction work, the contract of project scale, and the abandon of project during pre-land compensation stages that were occurred frequently in the highway construction projects. Finally we analyzed the sensitivity of the underlying asset using volatility, risk free rate and expiration date of option. CONCLUSIONS : We concluded that a highway construction project has economic value even though static NPV had a negative(-) value because of the sum of the existing static NPV and the option premium for the future's uncertainties associated with flexibilities.

Optimal Design of Machine Tool Structure for Static Loading Using a Genetic Algorithm (유전자 알고리듬을 이용한 공작기계 구조물의 정역학적 최적설계)

  • Park, Jong-Kweon;Seong, Hwal-Gyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.2
    • /
    • pp.66-73
    • /
    • 1997
  • In many optimal methods for the structural design, the structural analysis is performed with the given design parameters. Then the design sensitivity is calculated based on its structural anaysis results. There-after, the design parameters are changed iteratively. But genetic algorithm is a optimal searching technique which is not depend on design sensitivity. This method uses for many design para- meter groups which are generated by a designer. The generated design parameter groups are become initial population, and then the fitness of the all design parameters are calculated. According to the fitness of each parameter, the design parameters are optimized through the calculation of reproduction process, degradation and interchange, and mutation. Those are the basic operation of the genetic algorithm. The changing process of population is called a generation. The basic calculation process of genetic algorithm is repeatly accepted to every generation. Then the fitness value of the element of a generation becomes maximum. Therefore, the design parameters converge to the optimal. In this study, the optimal design pro- cess of a machine tool structure for static loading is presented to determine the optimal base supporting points and structure thickness using a genetic algorithm.

  • PDF

Non-linear Structural Optimization Using NROESL (등가정하중을 이용한 구조최적설계 방법을 이용한 비선형 거동구조물의 최적설계)

  • 박기종;박경진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1256-1261
    • /
    • 2004
  • Nonlinear Response Optimization using Equivalent Static Loads (NROESL) method/algorithm is proposed to perform optimization of non-linear response structures. It is more expensive to carry out nonlinear response optimization than linear response optimization. The conventional method spends most of the total design time on nonlinear analysis. Thus, the NROESL algorithm makes the equivalent static load cases for each response and repeatedly performs linear response optimization and uses them as multiple loading conditions. The equivalent static loads are defined as the loads in the linear analysis, which generates the same response field as those in non-linear analysis. The algorithm is validated for the convergence and the optimality. The function satisfies the descent condition at each cycle and the NROESL algorithm converges. It is mathematically validated that the solution of the algorithm satisfies the Karush-Kuhn-Tucker necessary condition of the original nonlinear response optimization problem. The NROESL algorithm is applied to two structural problems. Conventional optimization with sensitivity analysis using the finite difference method is also applied to the same examples. The results of the optimizations are compared. The proposed method is very efficient and derives good solutions.

  • PDF

Parameter Identification Using Static Compliance Dominant Frequencies (정유연성 지배주파수를 이용한 매개변수 인식기법)

  • Nam, Dong-Ho;Choi, Sang-Hyun;Park, Soo-Yong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.1 s.41
    • /
    • pp.71-78
    • /
    • 2005
  • This paper presents an improved system identification methodology for structural systems by applying static compliance dominant (SCD) frequencies. The existing sensitivity-based system identification technique is extended to adopt the static compliance dominant frequencies, and the performance of the additional spectral information, i.e., SCD frequencies, is compared with that of the natural frequencies only via a numerical example of a mechanical system. The results of the numerical study indicate that the additional use of the SCD frequencies improves accuracy in system identification problems.

Reliability analysis of external and internal stability of reinforced soil under static and seismic loads

  • Ahmadi, Rebin;Jahromi, Saeed Ghaffarpour;Shabakhty, Naser
    • Geomechanics and Engineering
    • /
    • v.29 no.6
    • /
    • pp.599-614
    • /
    • 2022
  • In this study, the reliability analysis of internal and external stabilities of Reinforced Soil Walls (RSWs) under static and seismic loads are investigated so that it can help the geotechnical engineers to perform the design more realistically. The effect of various variables such as angle of internal soil friction, soil specific gravity, tensile strength of the reinforcements, base friction, surcharge load and finally horizontal earthquake acceleration are examined assuming the variables uncertainties. Also, the correlation coefficient impact between variables, sensitivity analysis, mean change, coefficient of variation and type of probability distribution function were evaluated. In this research, external stability (sliding, overturning and bearing capacity) and internal stability (tensile rupture and pull out) in both static and seismic conditions were investigated. Results of this study indicated sliding as the predominant failure mode in the external stability and reinforcing rupture in the internal stability. First-Order Reliability Method (FORM) are applied to estimate the reliability index (or failure probability) and results are validated using the Monte Carlo Simulation (MCS) method. The results showed among all variables, the internal friction angle and horizontal earthquake acceleration have dominant impact on the both reinforced soil wall internal and external stabilities limit states. Also, the type of probability distribution function affects the reliability index significantly and coefficient of variation of internal friction angle has the greatest influence in the static and seismic limits states compared to the other variables.

Numerical investigations on anchor channels under quasi-static and high rate loadings - Case of concrete edge breakout failure

  • Kusum Saini;Akanshu Sharma;Vasant A. Matsagar
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.499-511
    • /
    • 2023
  • Anchor channels are commonly used for façade, tunnel, and structural connections. These connections encounter various types of loadings during their service life, including high rate or impact loading. For anchor channels that are placed close and parallel to an edge and loaded in shear perpendicular to and towards the edge, the failure is often governed by concrete edge breakout. This study investigates the transverse shear behavior of the anchor channels under quasi-static and high rate loadings using a numerical approach (3D finite element analysis) utilizing a rate-sensitive microplane model for concrete as constitutive law. Following the validation of the numerical model against a test performed under quasi-static loading, the rate-sensitive static, and rate-sensitive dynamic analyses are performed for various displacement loading rates varying from moderately high to impact. The increment in resistance due to the high loading rate is evaluated using the dynamic increase factor (DIF). Furthermore, it is shown that the failure mode of the anchor channel changes from global concrete edge failure to local concrete crushing due to the activation of structural inertia at high displacement loading rates. The research outcomes could be valuable for application in various types of connection systems where a high rate of loading is expected.

An Analytical Method of Thromboxane $B_2$ by Fast Atom Bombardment Mass Spectrometry (고속원자충격질량분석법을 이용한 Thromboxane $B_2$ 분석)

  • Jang, Suk-Yoon;Kim, Jung-Hoon;Lee, Yong-Moon;Jang, Seung-Ki;Moon, Dong-Cheul
    • Analytical Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.349-357
    • /
    • 1993
  • Analytical methods of thromboxane $B_2(TXB_2)$ using various techniques of Fast Atom Bombardment mass spectrometry (FAB MS) were studied, static FAB condition was investigated to obtain linear response curve using docosanoic acid as a internal standard. For maximum sensitivity, a continuos-flow(CF-) FAB MS by selected-ion monitoring(SIM) with devised sample introduction system, has been developed to quantiate thromboxane $B_2$ in biological sample. Instrumental parameters affecting sensitivity, reproducibility has been studied. The method has been optimized with respect to the eluent, 0.75% glycerol(in EtOH v/v) and flow rate of $3.7{\mu}l/min.$ Under the condition, detection limits were below 10pg in SIM mode and a good linear relationship between dose and response was achieved.

  • PDF

A Study on the Effect of Controllers in Small Signal Stability of Power Systems (전력계통의 미소신호안정도에 미치는 제어기의 영향에 관한 연구)

  • 권세혁;김덕영
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.72-79
    • /
    • 1996
  • The effect of controllers-Exciter, Power System Stabilizer, and Static Var Compensator-in one machine infinite bus system is investigated in this paper. The structure of generator state matrix with controllers is represented, while the Static Var Compensator is installed in generator terminal bus. Eigen-value analysis is performed and the effects of controllers to the dominant eigenvalue in one machine infinite bus system are represented by first order eigenvalue sensitivity coefficients while the operating conditions of the system are varied. Optimization of controller parameters using first order eigenvalue sensitivity coefficients is performed by the Simplex Method. It is proved that exciter control is the most efficient method to improve stability of the system and the effect of Static Var Compensator is small, in the case of one machine infinite bus system.

  • PDF

Evaluation of Progressive Collapse Resistance of Steel Moment Frame with WUF-B Connection and Composite Slab using Equivalent Energy-based Static Analysis (WUF-B 접합부 및 합성슬래브로 설계된 철골모멘트골조의 에너지 기반 근사해석을 이용한 연쇄붕괴 저항성능 평가)

  • Noh, Sam-Young;Park, Ki-Hwan;Hong, Seong-Cheol;Lee, Sang-Yun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.2
    • /
    • pp.19-28
    • /
    • 2018
  • The progressive collapse resistance performance of a steel structure constructed using the moment frame with the WUF-B connection and the composite slabs was evaluated. GSA 2003 was adapted for the evaluation. Additionally the structural robustness and the sensitivity against the progressive collapse were analyzed. In the numerical analysis, a reduced model comprised of the beam and spring elements for WUF-B connection was adapted. The composite slab was modeled using the composite-shell element. Instead of the time-consuming dynamic analysis for the effect of the sudden column removal, the equivalent energy-based static analysis was effectively applied. The analysis results showed that the structure was the most vulnerable to in the case of the internal column removal, however it satisfied the chord rotation criterion of GSA 2003 due to the contribution of the composite slab which improved the stiffness of structure. In the robustness evaluation, the structural performance showed more than 2.5 times of the requirement according to GSA 2003, and the structural sensitivity analysis indicated the decrease of 33% of the initial structural performance.

An Efficient 3D Inversion of MT Data Using Approximate Sensitivities (효율적인 3차원 MT 역산을 위한 다양한 감도의 이용)

  • Han, Nu-Ree;Nam, Myung-Jin;Kim, Hee-Joon;Lee, Tae-Jong;Song, Yoon-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.259-267
    • /
    • 2007
  • An efficient algorithm for inverting static-shifted magnetotelluric (MT) data has been proposed to produce a three-dimensional (3D) resistivity model. In the Gauss-Newton approach, computational costs associated with construction of a full sensitivity matrix usually make 3D MT inversion impractical. This computational difficulty may be overcome by using approximate sensitivities. We use four kinds of sensitivities in particular orders in the inversion process. These sensitivities are computed 1) analytically for an initial, homogeneous earth, 2) exactly for a current model, 3) approximately by the Broyden method, and 4) approximately using the previous adjoint fields. Inversion experiments with static-shifted synthetic and field MT data indicate that inversion results are highly dependent on characteristics of data and thus applying various combinations of sensitivities is helpful in obtaining a good image of the subsurface structure with reasonable computation time.