• 제목/요약/키워드: Static properties

검색결과 1,200건 처리시간 0.027초

압축하중을 받는 방진고무의 동특성 해석 및 실험 (Analysis and Experiment of the Dynamic Characteristics of Rubber Materials for Anti-Vibration under Compression)

  • 김국원;임종락;한용희;손희기;안태길
    • 소음진동
    • /
    • 제8권5호
    • /
    • pp.900-907
    • /
    • 1998
  • Rubber materials are extensively used in various machine design application, mainly for vibration/shock/noise control devices. Over the years an enormous effort has been put into developing procedures to provide properties of rubber material for design function. However, there are still a lot of difficulties in the understanding of dynamic characteristics of the rubber components in compression. In this paper, the dynamic characteristics of rubber materials for anti-vibration under compression were investigated. Dynamic and static tests for rubber material with 3 different hardness were performed. In dynamic tests, non-resonance method, impedance method, was used to obtain the complex modulus(storage modulus and loss factor) and the effects of static pre-strain on the dynamic characteristics were investigated. Also, a relation equation between linear dynamic and nonlinear static behavior of rubber material was discussed and its usefulness to predict their combined effects was investigated.

  • PDF

고차모드의 효과를 고려한 비선형정적평가방법 (Nonlinear Pushover Analysis Considering Higher Mode Effects)

  • 엄태성;이혜린;박홍근
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.153-160
    • /
    • 2005
  • A new nonlinear static analysis method, Effective Modal Pushover Analysis (EMPA) which can evaluate earthquake responses such as story drift and plastic rotation of plastic hinges addressing higher mode effects was developed. Unlike existing nonlinear static procedure based on properties of fundamental vibration mode, the EMPA performs nonlinear static analysis using multiple effective modes constructed by direct combination of natural vibration modes. Therefore higher mode effects can be efficiently considered. In the present study, procedures of the EPMA evaluating inelastic earthquake responese were established and the results were verified by nonlinear time history analysis. The EMPA can be applied to seismic evaluation of high-rise buildings and irregular buildings where higher mode effects become conspicuous.

  • PDF

고장력강을 이용한 자동차 경량 도어 개발 프로세스 (The Process Development of Automotive Light-Weighting Door using High Strength Steel)

  • 장동환
    • 소성∙가공
    • /
    • 제26권1호
    • /
    • pp.55-62
    • /
    • 2017
  • This paper proposes the process to develop a light-weighting automotive door assembly using high strength steel with low cost penalty. In recent years, the automotive industry is making an effort to reduce the vehicle weight. In this study, inner panels for automotive front door using thinner sheets and quenchable boron steel were designed to reduce the weight of conventional one. In order to evaluate the stiffness properties for the proposed door design, the several static tests were conducted using the finite element method. Based on the simulation results, geometry modifications of the inner panels were taken into account in terms of thickness changes and cost saving. Furthermore, a prototype based on the proposed design has been made, and then static stiffness test carried out. From the results, the proposed door is proved compatible and weight reduction of 11.8% was achieved. It could be a reference process for automotive industry to develop the similar products.

비영위법에 의한 5공 프로브의 교정에 관한 연구 (A Study on the Five - hole Probe Calibration with Non-nulling Method)

  • 정양범;신영호;박호동
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권2호
    • /
    • pp.116-116
    • /
    • 1996
  • This paper is concerned with a method for calibrating five-hole probes of both angle-tube and prismatic geometries to measure local total and static pressures and the magnitude and direction of the mean velocity vector. Descriptions of the calibration technique, the typical calibration data, and an accompanying discussion of the interpolation procedure are included. The flow properties are determined explicitly from measured probe pressures using calibration data. Flow angles are obtained within the deviation angle of 1.0 degree and dynamic pressures within 0.03 with 95% certainty. The variations in the calibration data due to Reynolds number are also discussed. For the range of Reynolds number employed, no effect was detected on the pitch, yaw and total pressure coefficients. However, the static pressure coefficient showed change to cause minor variations in the magnitude of the calculated velocity vector. To account for these variations, average correction factors need to be incorporated into the static pressure coefficient.

비영위법에 의한 5공 프로브의 교정에 관한 연구 (A Study on the Five-hole Probe Calibration with Non-nulling Method)

  • 정양범;신영호;박호동
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권2호
    • /
    • pp.48-56
    • /
    • 1996
  • This paper is concerned with a method for calibrating five-hole probes of both angle-tube and prismatic geometries to measure local total and static pressures and the magnitude and direction of the mean velocity vector. Descriptions of the calibration technique, the typical calibration data, and an accompanying discussion of the interpolation procedure are included. The flow properties are determined explicitly from measured probe pressures using calibration data. Flow angles are obtained within the deviation angle of 1.0 degree and dynamic pressures within 0.03 with 95% certainty. The variations in the calibration data due to Reynolds number are also discussed. For the range of Reynolds number employed, no effect was detected on the pitch, yaw abd total pressure coefficients. However, the static pressure coefficient showed change to cause minor variations in the magnitude of the calculated velocity vector. To account for these variations, average correction factors need to be incorporated into the static pressure coefficient.

  • PDF

구상흑연주철의 피로수명분포에 대한 통계적 해석 (A Statistical Analysis on Fatigue Life Distribution in Spheroidal Graphite Cast Iron)

  • 장성수;김상태
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2353-2360
    • /
    • 2000
  • Statistical fatigue properties of metallic materials are increasingly required for reliability design purpose. In this study, static and fatigue tests were conducted and the normal, log-normal, two -parameter Weibull distributions at the 5% significance level are compared using the Kolmogorov-Smirnov goodness-of-fit test. Parameter estimation were compared with experimental results using the maximum likelihood method and least square method. It is found that two-parameter Weibull distribution and maximum likelihood method provide a good fit for static and fatigue life data. Therefore, it is applicable to the static and fatigue life analysis of the spheroidal graphite cast iron. The P-S-N curves were evaluated using log-normal distribution, which showed fatigue life behavior very well.

진공회로차단기용 횡자계방식 접점의 충격해석 (Impact Analysis of Spiral type Electrodes in Vacuum Circuit Breaker)

  • 박우진;안길영;오일성;허훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.895-900
    • /
    • 2001
  • It is very important for impact analysis to reflect the dynamic characteristics of materials as well as the static characteristics. As the dynamic behavior of a material is different from the static(or quasi-static) one due to the inertia effect and the stress wave propagation, an adequate experimental technique has to be developed to obtain the dynamic responses for the corresponding level of the strain rate. To determine the dynamic characteristics of materials, the Hopkinson bar (compression type) experiment is carried out. For using dynamic material properties, Johnson-Cook model is applied in impact analysis with explicit finite element method

  • PDF

차체구조용 복합재 박육부재의 축압괴 특성에 관한 연구 (The Study on the Axial Collapse Characteristics of Composite Thin-Walled Members for Vehicles)

  • 김영남;차천석;양인영
    • 한국자동차공학회논문집
    • /
    • 제9권6호
    • /
    • pp.195-200
    • /
    • 2001
  • Composites have wide applications in aerospace vehicles and automobiles because of the inherent flexibility in their design for improved material properties. Composite tribes in particular, are potential candidates for their use as energy absorbing elements in crashworthiness applications due to their high specific energy absorbing capacity and the stroke efficiency. Their failure mechanism however is highly complicated and rather difficult to analyze. This includes fracture in fibres, in the matrix and in the fibre-matrix interface in tension, compression and shear. The purpose of this study is to investigate the energy absorption characteristics of CFRP(Carbon Fiber Reinforced Plastics) tubes on static and impact tests. Static compression tests have been carried out using the static testing machine and impact tests have been carried out using the vertical crushing testing machine. Interlaminar number affect the energy absorption capability of CFRP tubes. Also, theoretical and experimental have the same value.

  • PDF

A unified formulation for static behavior of nonlocal curved beams

  • Tufekci, Ekrem;Aya, Serhan A.;Oldac, Olcay
    • Structural Engineering and Mechanics
    • /
    • 제59권3호
    • /
    • pp.475-502
    • /
    • 2016
  • Nanobeams are widely used as a structural element for nanodevices and nanomachines. The development of nano-sized machines depends on proper understanding of mechanical behavior of these nano-sized beam elements. Small length scales such as lattice spacing between atoms, surface properties, grain size etc. are need to be considered when applying any classical continuum model. In this study, Eringen's nonlocal elasticity theory is incorporated into classical beam model considering the effects of axial extension and the shear deformation to capture unique static behavior of the nanobeams under continuum mechanics theory. The governing differential equations are obtained for curved beams and solved exactly by using the initial value method. Circular uniform beam with concentrated loads are considered. The displacements, slopes and the stress resultants are obtained analytically. A detailed parametric study is conducted to examine the effect of the nonlocal parameter, mechanical loadings, opening angle, boundary conditions, and slenderness ratio on the static behavior of the nanobeam.

샌드위치 복합재 구조의 손상에 의한 잔류 강도 연구 (A Study on Residual Strength of Damaged Sandwich Composite Structure)

  • 공창덕;박현범;김상훈;송민수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.2073-2079
    • /
    • 2008
  • This study aims to investigate the residual strength of sandwich composites with Al honeycomb core and carbon fiber face sheets after the quasi-static indentation damage by the experimental investigation. The 3-point bending test and the edge-wise compressive strength test were used to find the mechanical properties. The quasi-static point load and damaged hole was applied to introduce the simulated damage on the Each damaged specimens were finally assessed by the 3-point bending test and the compressive strength test. The investigation results revealed the residual strength of the damaged specimens due to the quasi-static indentation.

  • PDF