• Title/Summary/Keyword: Static behavior

Search Result 1,865, Processing Time 0.023 seconds

The impact of self-esteem and unstable adult attachment on Compensatory consumption behavior among Millennials (밀레니얼세대의 자아존중감과 불안정 성인애착이 보상소비행동에 미치는 영향)

  • Hwang, JiHee;Cho, KyeongEun;Choi, HyeKyong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.99-104
    • /
    • 2021
  • The purpose of the study is to examine the impact of self-esteem and unstable adult attachment on compensatory consumption among millennials. The survey was conducted on millennials (19~34) in June, 2018. The results revealed the static relationship between self-esteem and compliment-type compensatory consumption, while the relationship of self-esteem with consolation-type compensation consumption become insignificant when unstable adult attachment was controlled. Unstable adult attachment(anxiety/avoidance) showed significant impace on both compliment-type and consolation-type compensatory consumption. The research findings imply that compensatory consumption behaviors can be explained with psychological and relational factors among consumers in their early adulthood.

A Study on the Wearing Condition and Design Preferences of the Rash Guard (래시가드 착용실태 및 디자인 선호 연구)

  • Han, Yuchen;Choi, Jeongwook
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.24 no.1
    • /
    • pp.45-57
    • /
    • 2022
  • A rash guard, also known as rash vest or rashie, is functional sportswear that protects the wearer's skin from various dangers during outdoor sports activities. It is durable and comfortable since it is designed considering muscle movement. In modern society, more and more people enjoy leisure activities due to an increase in income level and increased leisure hours. Water leisure activities are increasingly enjoyed in the summer. As the way people think of leisure evolves, people are more inclined toward dynamic leisure sports rather than static facility tourism. Therefore, more research on rash guards is required. By identifying and analyzing the design preferences and purchase behaviors of young adults on rash guards, this study aims to provide basic data on the actual sportswear behaviors concerning those who are most active in water sports, people in their 20s and 30s. Furthermore, the study aims to contribute to a healthy exercise lifestyle for women who enjoy water sports and the growth of the water sportswear market. In the study, a survey was conducted using a questionnaire to investigate the wearing behaviors and purchase preferences as well as the wearing satisfaction on rash guards. For the study, 200 copies of the questionnaire were distributed and collected to be used as analysis data. The questionnaire consisted of 36 questions, 6 about demographic characteristics, 11 about purchase preferences, and 19 about wearing satisfaction. The collected data was analyzed using the statistical program SPSS 8.0. The study results can be used as basic data to investigate the design preferences and wearing behaviors of rash guards of women in their 20s and 30s. The results found numerous complaints on comfortableness and durability, which suggests more concern and improvements are necessary in those areas when designing patterns for rash guards.

A multi-objective optimization framework for optimally designing steel moment frame structures under multiple seismic excitations

  • Ghasemof, Ali;Mirtaheri, Masoud;Mohammadi, Reza Karami;Salkhordeh, Mojtaba
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.35-57
    • /
    • 2022
  • This article presents a computationally efficient framework for multi-objective seismic design optimization of steel moment-resisting frame (MRF) structures based on the nonlinear dynamic analysis procedure. This framework employs the uniform damage distribution philosophy to minimize the weight (initial cost) of the structure at different levels of damage. The preliminary framework was recently proposed by the authors based on the single excitation and the nonlinear static (pushover) analysis procedure, in which the effects of record-to-record variability as well as higher-order vibration modes were neglected. The present study investigates the reliability of the previous framework by extending the proposed algorithm using the nonlinear dynamic design procedure (optimization under multiple ground motions). Three benchmark structures, including 4-, 8-, and 12-story steel MRFs, representing the behavior of low-, mid-, and high-rise buildings, are utilized to evaluate the proposed framework. The total weight of the structure and the maximum inter-story drift ratio (IDRmax) resulting from the average response of the structure to a set of seven ground motion records are considered as two conflicting objectives for the optimization problem and are simultaneously minimized. The results of this study indicate that the optimization under several ground motions leads to almost similar outcomes in terms of optimization objectives to those are obtained from optimization under pushover analysis. However, investigation of optimal designs under a suite of 22 earthquake records reveals that the damage distribution in buildings designed by the nonlinear dynamic-based procedure is closer to the uniform distribution (desired target during the optimization process) compared to those designed according to the pushover procedure.

Study on Seismic Evaluation of Racking Response of Underground Utility Tunnels with a Rectangular Cross Section in Korea (국내 박스형 공동구의 횡방향 지진 변위응답 평가에 대한 고찰)

  • Kim, Dae-Hwan;Lim, Youngwoo;Chung, Yon Ha ;Lee, Hyerin
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.12
    • /
    • pp.29-43
    • /
    • 2022
  • Various underground facilities are being constructed to improve the urban environment. Therefore, it is more necessary than ever to reasonably evaluate the seismic response of underground utility tunnels, playing a significant part in urban infrastructure. In this study, the major features and differences of two types of existing pseudo-static analysis methods are reviewed. Each method uses a simplified 2D frame model to represent the seismic behavior of underground structures. Applying each method to a one-barrel rectangular utility tunnel in Korea, the suitability in predicting seismic responses, especially the racking deformation of the tunnel, is examined. In addition, several precautions and suggestions are provided in this study against the inattentive application of the methods to seismic evaluation of underground structures.

Collapse-resistant performance of a single-story frame assembly and multi-story sub-frame under an internal column-removal scenario

  • Zhong, Wei-hui;Tan, Zheng;Tian, Li-min;Meng, Bao;Zheng, Yu-hui;Daun, Shi-chao
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.663-679
    • /
    • 2021
  • To elucidate the differences in the collapse behavior between a single-story beam-column assembly and multi-story frame, two 1/3-scale two-bay composite frames, including a single-story composite beam-column assembly and a three-story composite sub-frame, were designed and quasi-statically tested. The load-displacement responses, failure modes, and internal force development of the two frames were analyzed and compared in detail. Furthermore, the resistance mechanisms of the two specimens were explored, and the respective contributions of different load-resisting mechanisms to the total resistances were quantitatively separated to gain deeper insights. The experimental tests indicated that Vierendeel action was present in the two-dimensional multi-story frames, which led to an uneven internal force distribution among the three stories. The collapse resistance of TSDWA-3S in the flexural stage was not significantly increased by the structural redundancy provided by the additional story, as compared to that of TSDWA-1S. Although the development of the load response was similar in the two specimens at flexural stage, the collapse mechanisms of the multi-story composite frame were much more complicated than those of the single-story beam-column assembly, and the combined action between stories was critical in determining the internal force redistribution and rebalancing of the remaining structure.

Effect of rubber fiber size fraction on static and impact behavior of self-compacting concrete

  • Thakare, Akshay A.;Siddique, Salman;Singh, Amardeep;Gupta, Trilok;Chaudhary, Sandeep
    • Advances in concrete construction
    • /
    • v.13 no.6
    • /
    • pp.433-450
    • /
    • 2022
  • The conventional disposal methods of waste tires are harmful to the environment. Moreover, the recycling/reuse of waste tires in domestic and industrial applications is limited due to parent product's quality control and environmental concerns. Additionally, the recycling industry often prefers powdered rubber particles (<0.60 mm). However, the processing of waste tires yields both powdered and coarser (>0.60 mm) size fractions. Reprocessing of coarser rubber requires higher energy increasing the product cost. Therefore, the waste tire rubber (WTR) less favored by the recycling industry is encouraged for use in construction products as one of the environment-friendly disposal methods. In this study, WTR fiber >0.60 mm size fraction is collected from the industry and sorted into 0.60-1.18, 1.18-2.36-, and 2.36-4.75-mm sizes. The effects of different fiber size fractions are studied by incorporating it as fine aggregates at 10%, 20%, and 30% in the self-compacting rubberized concrete (SCRC). The experimental investigations are carried out by performing fresh and hardened state tests. As the fresh state tests, the slump-flow, T500, V-funnel, and L-box are performed. As the hardened state tests, the scanning electron microscope, compressive strength, flexural strength and split tensile strength tests are conducted. Also, the water absorption, porosity, and ultrasonic pulse velocity tests are performed to measure durability. Furthermore, SCRC's energy absorption capacity is evaluated using the falling weight impact test. The statistical significance of content and size fraction of WTR fiber on SCRC is evaluated using the analysis of variance (ANOVA). As the general conclusion, implementation of various size fraction WTR fiber as fine aggregate showed potential for producing concrete for construction applications. Thus, use of WTR fiber in concrete is suggested for safe, and feasible waste tire disposal.

The Experimental Study of Full-scale Centrifugal Formed High Strength Concrete Prismatic Beam(CFPB) Composited with Deck Slab (상부 슬래브와 합성된 원심성형으로 제작된 초고강도 각형보의 실험연구 )

  • Doo-Sung Lee;Sung-Jin Kim;Jeong-Hoi Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.19-29
    • /
    • 2023
  • An ultra-high strength prestressed prismatic beam of 100 MPa in compressive strength was developed by increasing the watertightness of concrete by utilizing centrifugal molding processes without adding expensive admixtures such as silica fume. The ultra-high strength centrifugal shaped square beam installed on the wall is composited with the upper slab concrete and then subjected to a service load. Horizontal shear stress is generated by bending between the centrifugal molding beam and the floor plate, which causes the beam and floor plate to perform composite behavior through shear connections such as studs and rebars. In this study, a flexural load test was performed on a mock-up specimen that was synthesized by fabricating an RC slab on top of a 100 MPa-class centrifugal shaped beam produced at the factory. proven reliability.

A Quantitative Approach to Minimize Energy Consumption in Cloud Data Centres using VM Consolidation Algorithm

  • M. Hema;S. KanagaSubaRaja
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.312-334
    • /
    • 2023
  • In large-scale computing, cloud computing plays an important role by sharing globally-distributed resources. The evolution of cloud has taken place in the development of data centers and numerous servers across the globe. But the cloud information centers incur huge operational costs, consume high electricity and emit tons of dioxides. It is possible for the cloud suppliers to leverage their resources and decrease the consumption of energy through various methods such as dynamic consolidation of Virtual Machines (VMs), by keeping idle nodes in sleep mode and mistreatment of live migration. But the performance may get affected in case of harsh consolidation of VMs. So, it is a desired trait to have associate degree energy-performance exchange without compromising the quality of service while at the same time reducing the power consumption. This research article details a number of novel algorithms that dynamically consolidate the VMs in cloud information centers. The primary objective of the study is to leverage the computing resources to its best and reduce the energy consumption way behind the Service Level Agreement (SLA)drawbacks relevant to CPU load, RAM capacity and information measure. The proposed VM consolidation Algorithm (PVMCA) is contained of four algorithms: over loaded host detection algorithm, VM selection algorithm, VM placement algorithm, and under loading host detection algorithm. PVMCA is dynamic because it uses dynamic thresholds instead of static thresholds values, which makes it suggestion for real, unpredictable workloads common in cloud data centers. Also, the Algorithms are adaptive because it inevitably adjusts its behavior based on the studies of historical data of host resource utilization for any application with diverse workload patterns. Finally, the proposed algorithm is online because the algorithms are achieved run time and make an action in response to each request. The proposed algorithms' efficiency was validated through different simulations of extensive nature. The output analysis depicts the projected algorithms scaled back the energy consumption up to some considerable level besides ensuring proper SLA. On the basis of the project algorithms, the energy consumption got reduced by 22% while there was an improvement observed in SLA up to 80% compared to other benchmark algorithms.

Bending of axially functionally graded carbon nanotubes reinforced composite nanobeams

  • Ahmed Drai;Ahmed Amine Daikh;Mohamed Oujedi Belarbi;Mohammed Sid Ahmed Houari;Benoumer Aour;Amin Hamdi;Mohamed A. Eltaher
    • Advances in nano research
    • /
    • v.14 no.3
    • /
    • pp.211-224
    • /
    • 2023
  • This work presents a modified analytical model for the bending behavior of axially functionally graded (AFG) carbon nanotubes reinforced composite (CNTRC) nanobeams. New higher order shear deformation beam theory is exploited to satisfy parabolic variation of shear through thickness direction and zero shears at the bottom and top surfaces.A Modified continuum nonlocal strain gradient theoryis employed to include the microstructure and the geometrical nano-size length scales. The extended rule of the mixture and the molecular dynamics simulations are exploited to evaluate the equivalent mechanical properties of FG-CNTRC beams. Carbon nanotubes reinforcements are distributed axially through the beam length direction with a new power graded function with two parameters. The equilibrium equations are derived with associated nonclassical boundary conditions, and Navier's procedure are used to solve the obtained differential equation and get the response of nanobeam under uniform, linear, or sinusoidal mechanical loadings. Numerical results are carried out to investigate the impact of inhomogeneity parameters, geometrical parameters, loadings type, nonlocal and length scale parameters on deflections and stresses of the AFG CNTRC nanobeams. The proposed model can be used in the design and analysis of MEMS and NEMS systems fabricated from carbon nanotubes reinforced composite nanobeam.

Analysis of Microstructural Refinement for Inconel 706 during Hot Forging Process through Reheating and Strain (Inconel 706의 열간단조 공정 중 재가열과 변형양에 따른 결정립 미세화에 대한 분석)

  • S. G. Seong;H. J. Kang;Y. S. Lee;S. Y. Lee;U. J. Lee;H. I. Jae;J. H. Shin;E. Y. Yoon
    • Transactions of Materials Processing
    • /
    • v.32 no.5
    • /
    • pp.239-246
    • /
    • 2023
  • To reduce the forming load due to the temperature drop, during the hot forging process, a reheating hot forging process design is required that to repeat heating and forging. However, if the critical strain required for recrystallization is not induced during forging and grain growth becomes dominant due to the reduction in dislocation density due to repeated heating, the mechanical properties may deteriorate. Therefore, in this study, Inconel 706 alloy was applied, and the grain refinement behavior was comparatively analyzed according to the number of reheating times and effective strain during reheating hot forging process. Reheating was carried out with a total compression rate of 40% up to 4 times. The Inconel 706 compression test specimens heated once showed finer grains as the effective strain increased due to the dynamic recrystallization phenomenon. However, as the number of heating increases, grain refinement was observed even in a low effective strain distribution of 0.43 due to static recrystallization during reheating. Moreover, grain growth occurs at a relatively low effective strain of 0.43 when the number of reheating is four or more. Therefore, it was effective to apply an effective strain of 0.43 or more during hot forging to Inconel 706 in order to induce crystallization through grain refinement and improve the properties of forged products. In addition, we could notice that up to three reheating times condition was appropriate to prevent grain growth and maintain fine grain size.