• Title/Summary/Keyword: Static and Dynamic Behavior

Search Result 722, Processing Time 0.027 seconds

Laminate composites behavior under quasi-static and high velocity perforation

  • Yeganeh, E. Mehrabani;Liaghat, G.H.;Pol, M.H.
    • Steel and Composite Structures
    • /
    • v.22 no.4
    • /
    • pp.777-796
    • /
    • 2016
  • In this paper, the behavior of woven E-glass fabric composite laminate was experimentally investigated under quasi-static indentation and high velocity impact by flat-ended, hemispherical, conical (cone angle of $37^{\circ}$ and $90^{\circ}$) and ogival (CRH of 1.5 and 2.5) cylindrical perforators. Moreover, the results are compared in order to explore the possibility of extending quasi-static indentation test results to high velocity impact test results in different characteristics such as perforation mechanisms, performance of perforators, energy absorption, friction force, etc. The effects of perforator nose shape, nose length and nose-shank connection shapes were investigated. The results showed that the quasi-static indentation test has a great ability to predict the high velocity impact behavior of the composite laminates especially in several characteristics such as perforation mechanisms, perforator performance. In both experiments, the highest performance occurs for 2.5 CRH projectile and the lowest is related to blunt projectiles. The results show that sharp perforators indicate lower values of dynamic enhancement factor and the flat-ended perforator represents the maximum dynamic enhancement factor among other perforators. Moreover, damage propagation far more occurred in high velocity impact tests then quasi-static tests. The highest damage area is mostly observed in ballistic limit of each projectile which projectile deviation strongly increases this area.

The Behavior and Estimated Stiffness Rubber Pad for Disk Bearing (디스크 받침용 고무패드의 거동 및 강성추정)

  • Cho, Sung-Chul;Choi, Eun-Soo;Park, Joo-Nam;Kim, Man-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.599-605
    • /
    • 2009
  • The aim of the present study is the characteristics of bridge rubber pads and suggested how to determine the stiffness the pads. A disk bearing is operated as an elastic bearing in the vertical direction and is composed of a Polyether Urethane (polyurethane) disk for elastic support and Polytetrafluoroethylene (PTFE) to accommodate movement. Static tests are conducted in a laboratory to determine the static behavior of a Polyurethane disk. Finite Element (FE) analysis is also performed to verify the static performance. For dynamic behavior, four disk bearings having the identical Polyurethane disk used in the static tests are installed in a full size railway bridge and tested under a running locomotive. From the tests results, the static and dynamic stiffness of disk bearings are estimated and compared with each other. In the procedure to estimate the stiffness of a pad, the dead load(pre-load) of a bridge and live load of a vehicle are considered.

  • PDF

Equivalent Static Analysis of Progressive Collapse Using Equivalent Load for Stiffness (강성등가하중을 이용한 등가정적 연쇄붕괴 해석)

  • Hwang, Young-Chul;Kim, Gye-Joong;Kim, Chee-Kyeong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.375-380
    • /
    • 2007
  • The goal of this paper is to develop a rational static method which consider efficiently the dynamic effect of the gravity load following sudden removal of element. For this goal this paper introduce the equivalent load for element stiffness which is a preceding research result and will develop equivalent static analysis which will be able to predict the maximum behavior considering dynamic effect. Some examples are provided to verify it. Equivalent static analysis is compared with the analysis method which is recommended by the GSA2003 guidelines and the time-history analysis which is the most accurate for dynamic behavior.

  • PDF

Static or Dynamic Capital Structure Policy Behavior: Empirical Evidence from Indonesia

  • UTAMI, Elok Sri;GUMANTI, Tatang Ary;SUBROTO, Bambang;KHASANAH, Umrotul
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.1
    • /
    • pp.71-79
    • /
    • 2021
  • This study investigates the capital structure policy among Indonesian public companies. Previous studies suggest that capital structure policy could follow either static or dynamic behavior. The sample data used in this study was companies in the manufacturing sector, divided into three sub-sectors: the basic and chemical industry, miscellaneous industry, and the consumer goods industry. This study uses panel data from 2010 to 2018, with the Generalized Least Square (GLS) method and compared whether the fixed effect model is better than the common effect model. The results show that the dynamic and non-linear model tests can explain the capital structure determinants than the static and linear models. The dynamic model shows that the capital structure of a certain year is influenced by the capital structure of the previous year. The findings indicate that the company performs some adjustments in its capital structure policy by referring to the previous debt ratio, which implies support to the trade-off theory (TOT). The study also shows that profitability, tangible assets, size, and age explain the variation of capital structure policy. The patterns on the dynamic and non-linear confirm that capital structure runs in a nonlinear pattern, based on the sector, company condition, and the dynamic environment.

A Behavior Analysis of Railway Steel Plate Girder Bridge in the Applying Resilient Panel Track System (방진제도시스템 적용에 따른 강철도 무도상 판형교의 거동 분석)

  • Choi, Jung-Youl;Eom, Mac;Kang, Duk-Man;Park, Yong-Gul
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6 s.37
    • /
    • pp.717-724
    • /
    • 2006
  • The major objective of this study is to investigate the effects and application of improvement for railway steel plate girder bridge by resilient panel track system. It analyzed the mechanical behaviors of steel plate girder bridge with applying resilient panel track system on the finite element analysis and laboratory test for static & dynamic characteristics. As a result, the improvement of steel plate girder bridge with resilient panel track systems are obviously effective for the static & dynamic response which is non-ballast steel plate girder bridge. The analytical and experimental study are carried out to investigate resilient panel track system decrease vertical acceleration and deflection on steel plate girder bridge for serviceability. And the resilient panel track system reduced dynamic maximum displacements (about 59%) and stresses (about 82%), the increase of dynamic safety is predicted by adopting resilient panel track system. From the dynamic test results of steel plate girder bridge, it is investigated that vertical acceleration and deflection is very low with applying resilient panel track system. The servicing steel plate girder bridge with resilient panel track system has need of the reasonable improvement measures which could be reducing the effect of static and dynamic behavior that degradation phenomenon of structure by an unusual response characteristic and a drop durability.

A Behavior Analysis of Railway Steel Plate Girder Bridge in the applying Resilient Panel Track system (방진궤도시스템 적용에 따른 강철도 무도상 판형교의 거동 분석)

  • Lee, Si-Yong;Eom, Mac;Oh, Soo-Jin;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.437-446
    • /
    • 2006
  • The major objective of this study is to investigate the effects and application of improvement for railway steel plate girder bridge by resilient panel track system. It analyzed the mechanical behaviors of steel plate girder bridge with applying resilient panel track system on the finite element analysis and laboratory test for static & dynamic characteristics. As a result, the improvement of steel plate girder bridge with resilient panel track systems are obviously effective for the static & dynamic response which is non-ballast steel plate girder bridge. The analytical and experimental study are carried out to investigate resilient panel track system decrease vertical acceleration and deflection on steel plate girder bridge for serviceability. And the resilient panel track system reduced dynamic maximum displacements(about 59%) and stresses(about 82%), the increase of dynamic safety is predicted by adopting resilient panel track system. From the dynamic test results of steel plate girder bridge, it is investigated that vertical acceleration and deflection is very low with applying resilient panel track system. The servicing steel plate girder bridge with resilient panel track system has need of the reasonable improvement measures which could be reducing the effect of static and dynamic behavior that degradation phenomenon of structure by an unusual response characteristic and a drop durability.

  • PDF

High Strain Rate Compression Behavior of EPP Bumper Foams (변형률 속도에 따른 EPP Foam의 대변형 동적 압축 특성에 관한 연구)

  • Choi, Ki-Sang;Kang, Woo-Jong;Kim, Gi-Hoon;Kim, Seong-Kun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.118-125
    • /
    • 2009
  • Bumper is designed to protect the automotive frame without damage at low velocity. Expanded polypropylene (EPP) foam is used in the bumper as an energy absorbing material. In order to exactly predict the energy absorbing performance of the foam material under impact loading condition, it is important to use high strain rate material properties. In this study, a new apparatus for dynamic compression tests was developed to investigate the high strain rate behavior of EPP foams. Three kinds of EPP foams which have different expansion ratios were tested to investigate the quasi-static and dynamic compression behavior. Quasi-static compressions were performed at low strain rates of 0.001/s, 0.1/s and 1/s. The dynamic compressions were carried out at high strain rates of 50/s and 100/s with the developed apparatus. It was observed that the EPP foam has significant strain rate effect as compared to quasi-static behavior.

Effects of tendon damage on static and dynamic behavior of CFTA girder

  • Vu, Thuy Dung;Lee, Sang Yoon;Chaudhary, Sandeep;Kim, Dookie
    • Steel and Composite Structures
    • /
    • v.15 no.5
    • /
    • pp.567-583
    • /
    • 2013
  • Experimental studies and finite element analyses have been carried out to establish the effect of tendon damage on the structural behavior of concrete filled tubular tied arch girder (CFTA girder). The damage of tendon is considered in different stages by varying the number of damaged cables in the tendon. Static and dynamic structural parameters are observed at each stage. The results obtained from the experiments and numerical studies have been compared to validate the studies. The tendons whose damage can significantly affect the stiffness of the CFTA girder are identified by performing the sensitivity analysis. The locations in the girder which are sensitive to the tendon damage are also identified.

Sensitivity analysis of mechanical behaviors for bridge damage assessment

  • Miyamoto, Ayaho;Isoda, Satoshi
    • Structural Engineering and Mechanics
    • /
    • v.41 no.4
    • /
    • pp.539-558
    • /
    • 2012
  • The diagnosis of bridge serviceability is carried out by a combination of in-situ visual inspection, static and dynamic loading tests and analyses. Structural health monitoring (SHM) using information technology and sensors is increasingly being used for providing a better estimate of structural performance characteristics rather than above traditional methods. Because the mechanical behavior of bridges with various kinds of damage can not be made clear, it is very difficult to estimate both the damage mode and degree of damage of existing bridges. In this paper, the sensitivity of both static and dynamic behaviors of bridges are studied as a measure of damage assessment through experiments on model bridges induced with some specified artificial damages. And, a method of damage assessment of bridges based on those behaviors is discussed in detail. Finally, based on the results, a possible application for structural health monitoring systems for existing bridges is also discussed.

A Study on the Development of the Dynamic Photoelastic Hybrid Method for Isotropic Material (등방성체용 동적 광탄성 하이브리드 법 개발에 관한 연구)

  • Sin, Dong-Cheol;Hwang, Jae-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2220-2227
    • /
    • 2000
  • In this paper, dynamic photoelastic hybrid method is developed and its validity is certified. The dynamic photoelastic hybrid method can be used on the obtaining of dynamic stress intensity factors and dynamic stress components. The effect of crack length on the dynamic stress intensity factors is less than those on the static stress intensity factors. When structures are under the dynamic mixed mode load, dynamic stress intensity factor of mode I is almost produced. Dynamic loading device manufactured in this research can be used on the research of dynamic behavior when mechanical resonance is produced and when crack is propagated with the constant velocity.