• Title/Summary/Keyword: Static Walking

Search Result 148, Processing Time 0.029 seconds

Fault Tolerance in Control of Autonomous Legged Robots (자율 보행 로봇을 위한 내고장성 제어)

  • 양정민
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.943-951
    • /
    • 2003
  • A strategy for fault-tolerant gaits of autonomous legged robots is proposed. A legged robot is considered to be fault tolerant with respect to a given failure if it is guaranteed to be capable of walking maintaining its static stability after the occurrence of the failure. The failure concerned in this paper is a locked joint failure for which a joint in a leg cannot move and is locked in place. If a failed joint is locked, the workspace of the resulting leg is constrained, but legged robots have fault tolerance capability to continue static walking. An algorithm for generating fault-tolerant gaits is described and, especially, periodic gaits are presented for forward walking of a hexapod robot with a locked joint failure. The leg sequence and the formula of the stride length are analytically driven based on gait study and robot kinematics. The transition procedure from a normal gait to the proposed fault-tolerant gait is shown to demonstrate the applicability of the proposed scheme.

Locomotions of a Biped Robot: Static vs. Dynamic Gaits (이족 로봇의 위치 이동: 정보행 대 동보행)

  • Lim Seung-Chul;Ko In-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.6 s.249
    • /
    • pp.643-652
    • /
    • 2006
  • This paper is concerned with computer simulations of a biped robot walking in static and dynamic gaits. To this end, a three-dimensional robot is considered possessing a torso and two identical legs of a typical design. For such limbs, a set of inverse kinematic solutions is analytically derived between the torso and the feet. Specific walking patterns are off-line generated meeting stability based on the VPCG or ZMP condition. Subsequently, to verify whether the robot can walk as planned in the presence of mass and ground effects, a multi-body dynamics CAE code has been applied to the resulting joint motions determined by inverse kinematics. As a result, the key parameters to successful gaits could be identified including inherent characteristics as well. Upon comparisons between the two types of gaits, dynamic gaits are concluded more desirable for larger humaniods.

Fault Tolerant Straight-Line Gaits of a Quadruped Robot with Feet of Flat Shape (평판 발을 가지는 사족 보행 로봇의 내고장성 걸음새)

  • Yang, Jung-Min;Kwak, Seong-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.2
    • /
    • pp.141-148
    • /
    • 2012
  • This paper proposes fault tolerant gaits of a quadruped robot with feet of flat shape. Fault tolerant gaits make it possible for a legged robot to continue static walking against a leg failure. In the previous researches, it was assumed that a legged robot had feet that have point contact with the surface. When the robot is endowed with feet having flat shape, fault tolerant gaits can show better performance compared with the former gaits, especially in terms of the stride length and gait stability. In this paper, fault tolerant gaits of a quadruped robot against a locked joint failure are addressed in straight-line motion and crab walking, respectively.

Static Obstacle Crossing Locomotion of a Four-Legged Walking Machine (4-족 보행 로봇의 정역학적 장애물 횡단 보행에 관한 연구)

  • Park, Sung Ho;Chung, Gwang Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.152-162
    • /
    • 1996
  • A four-legged Walking Machine can move on the plain terrain with mobility and stability and stability, but if there exist any obstacles on the terrain of the motion direction, it takes extra time to cross those obstacles and the stability should be considered during motion. The main objective is the study a Quadruped which can cross obstacles with better mobility, stability and fuel economy than any other wheeled or tracked vehicles. Vertical step, isolated wall and ditch are the basic obstacles and by understanding those three cases perfectly, a Quadruped can move on any mixed rough terrain as 4-legged terrestrial vertebrates move. Each leg of a Quadruped has a limited walk space called a walking volume and this is very important to deter- mine the crossing capability in a static analysis. A Quadruped can be simplified with links and joints. By applying the research method, a quadruped can determine the control procedures as soon as it receives the terrain information from scanner and finally can move with mobility and stability.

  • PDF

The Effects of a Regular Walking Program on Body Composition, Functional Fitness, and Anxiety and Depression in Elderly Women (여성노인의 규칙적인 걷기운동이 신체조성, 기능성 체력, 그리고 불안과 우울에 미치는 영향)

  • Lee, Samcheol
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.4 no.2
    • /
    • pp.67-76
    • /
    • 2016
  • Purpose : The purpose of this study was to compare the effects of a 5 week walking program on body composition and functional fitness, as well as its effects on anxiety and depression in elderly women by regular walking exercise(RWE), which helps to provide proper treatment program to them. Method : The 32 subjects who had a regular walking exercise in this research and randomly assigned into two groups, a walking group and a control group. 15 subjects in the experimental group who had RWE. The 17 subjects in the control group who did not have walking exercise. The members of exercise group had walking 50 minutes a day, three times a week, for 5 weeks in same conditions. Results : After RWE, The participants showed lower body weight, body fat mass, % fat, BMI, wast-hip ratio in the walking program. Muscle mass and basic metabolic rate significantly increased after completing the walking program. The health-related physical fitness of the walking group, flexibility and static balance ability were significantly increased. elderly women taking RWE showed significant decreases in the anxiety and depression levels. Conclusion : Findings of this study indicated that A RWE program had favorable effect on body composition, functional fitness, and depression and anxiety in elderly women. Future research needs to target various elderly women groups of a long period.

Effect of Static Recovery and Dynamic Recovery on the Cardiopulmonary Variables, Lower Extremity Muscle Activity after Progressive Resistance Exercise to Maximal Point

  • Yoon, Jung-Gyu;Kim, Ga-Yeong;Kim, Min-A;Lee, Seung-Mi;Kwon, Seung-Min;Yoo, Kyung-Tae;Cho, Joon-Haeng;Choi, Jung-Hyun
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.2 no.1
    • /
    • pp.237-243
    • /
    • 2011
  • This study was to examine on the respiratory variables, heart rate and muscle activity between the static recovery and dynamic recovery after progressive resistance exercise to maximal point. Subjects were 15 students enrolled in N University. All were tested two times (static recovery and dynamic recovery) and were requested to perform a walking on a treadmill after progressive resistance exercise to maximal point. Electromyography(EMG) was used to monitor the muscle activity(TA: Tibialis Anterior, MG: Medial Gastrocnemius) during gait. CPEX-1 was used to measure the respiratory variables and heart rate. The dynamic recovery group was shown the significant lower heart rate than that of static recovery group at during gait. Respiratory rate showed statistically a significant difference. Electromyography(RMS, root mean square) showed a non-significant difference. But the dynamic recovery group of muscle activity was found highly in TA and MG. This study indicated that the dynamic recovery method evidenced more faster than the static recovery method. And this type of dynamic rest by walking can be a help of recovery after exercise.

Effects of High-heeled Shoe with Different Height on the Balance during Standing and Walking (하이힐 높이에 따른 균형성)

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.479-486
    • /
    • 2010
  • The purpose of this study was to determine the effects of high-heeled shoe on the quiet standing and gait balance. Twenty women (mean height: $161.6{\pm}3.3\;cm$, mean body mass: $53.8{\pm}6.3\;kg$, mean age: $23.8{\pm}2.7$ yrs..) who were without history or complain of lower limb pain took part in this study. They were asked to stand quietly on a force platform for 30 sec and walk on it at their preferred walking speed (mean speed $3.14{\pm}0.5\;km/hr$.) with wearing three different high-heeled shoe, 3, 7, 9 cm high for collecting data. Data were randomly recorded to collect two trials for quiet standing and five trials for walking The parameters to have been analyzed for comparison between three conditions of the height of high-heeled shoe were COP(Center of Pressure) range, COP velocity, sway area, and free moment on the static balance and COP range, COP velocity, and free moment on the dynamic balance. In this study, high-heel height affected on the COP range and velocity in the ante-posterior direction during walking, dynamic balance, but didn't affect on the quiet standing, static balance.

Effects of Walking Training according to Rhythmic Auditory Stimulation Speed Control Balance of Stroke Patients

  • Jin Park;Taeho Kim
    • The Journal of Korean Physical Therapy
    • /
    • v.35 no.6
    • /
    • pp.213-219
    • /
    • 2023
  • Purpose: In this study, based on the error augmentation, we performed walking training with increased rhythmic auditory stimulation speed on the affected side (IRAS) and walking training with decreased rhythmic auditory stimulation speed on the unaffected side (DRAS). The purpose of this study was to verify whether motor learning was effective in improving balance ability. Methods: Twenty-eight subjects with chronic stroke were recruited from a rehabilitation center. The subjects were divided into three groups: an IRAS group (10 subjects), a DRAS group (9 subjects), and control group (9 subjects). They received 30minutes of neuro-developmental therapy and walking training for 30minutes, five times a week for three weeks. Static and functional balance ability were measured before and after the training period. Static balance was measured by balancia software. Functional balance was measured by the timed up and go test (TUG) and the berg balance scale (BBS). Results: After the training periods, the IRAS group showed a significant improvement in TUG, BBS, area 95% COP, and weight distribution on the affected side when compared to both the DRAS group and control group (p<0.05). Conclusion: Based on the results of this study, it is possible to consider error augmentation methods of motor learning if rhythmic auditory stimulation is applied to stroke patients in clinical practice. If the affected side is shorter than the unaffected side, the affected side should be adjusted to the increased rhythmic auditory stimulation speed, which is considered to be an effective intervention to improve balance ability.

Development of a Biped Walking Robot

  • Kim, Yong-Sung;Seo, Chang-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2350-2355
    • /
    • 2005
  • In this paper, we introduce biped walking robot which can static walking with 22 degree-of-freedoms. The developed biped walking robot is 480mm tall and 2500g, and 22 RC servo motors are used to actuate. Before made an active algorithm, we generated the motions of robot with the motion simulator which developed using by C language. The two dimension simulator is Based on the inverse kinematics and D-H transform. The simulator implements various motions as inputted the ankle's trajectory. Also we developed a simulator which is applied the principle of inverted pendulum to acquires the center of gravity. As we use this simulator, we can get the best appropriate angle of ankle and pelvis when the robot lifts up its one side leg during the working. We implement the walking motions which is based on the data(angle) getting from both of simulators. The robot can be controlled by text shaped command through RF signal of wireless modem which connected with laptop computer by serial cable.

  • PDF

Design of Static Gait Algorithm for Hexapod Subsea Walking Robot: Crabster (6 족 해저보행로봇을 위한 정적 보행 알고리즘 설계)

  • Yoo, Seong Yeol;Jun, Bong Huan;Shim, Hyungwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.989-997
    • /
    • 2014
  • In this paper, we describe a design method for the static walking algorithm of a subsea hexapod robot called Crabster (CR200). To design the gait algorithms of a hexapod robot, we propose a design method that uses a gait schedule vector and leg pair vector to secure convenience and expandability. Several walking algorithms are designed that are capable of being applied to CR200 according to the underwater environment and explorative conditions. In addition, gait transition is freely performed between algorithms by applying common control parameters to them. The gait algorithms designed using the proposed method are simulated using MATLAB and validated against the results of experiments.