DOI QR코드

DOI QR Code

Design of Static Gait Algorithm for Hexapod Subsea Walking Robot: Crabster

6 족 해저보행로봇을 위한 정적 보행 알고리즘 설계

  • Received : 2014.05.29
  • Accepted : 2014.07.17
  • Published : 2014.09.01

Abstract

In this paper, we describe a design method for the static walking algorithm of a subsea hexapod robot called Crabster (CR200). To design the gait algorithms of a hexapod robot, we propose a design method that uses a gait schedule vector and leg pair vector to secure convenience and expandability. Several walking algorithms are designed that are capable of being applied to CR200 according to the underwater environment and explorative conditions. In addition, gait transition is freely performed between algorithms by applying common control parameters to them. The gait algorithms designed using the proposed method are simulated using MATLAB and validated against the results of experiments.

본 논문에서는 6 족 다관절 해저로봇 크랩스터를 위한 정적 보행 알고리즘 설계 방법에 대하여 기술하였다. 정적 보행 알고리즘 설계를 위해 보행계획 벡터와 다리쌍 벡터의 개념을 도입하여 6 족 로봇 보행기법 설계의 편의성과 확장성을 확보하고, 이를 이용하여 수중환경이나 탐사조건에 따라 운용할 수 있는 여섯 가지 정적 보행기법을 설계하였다. 그리고, 공통 제어변수를 사용하여 각 보행 간 자유로운 연동과 자세제어와의 복합보행을 수행할 수 있도록 하였다. 설계된 여섯 가지 정적 보행기법은 시뮬레이션을 통하여 확인하였고, 크랩스터에 적용하여 보행기법 간 연동성과 복합보행 기능 등을 검증하였다.

Keywords

References

  1. Shim, H.W., Jun, B.H., Lee, P.M., Baek, H., Lee, J.H., 2010, "Workspace Control System of Underwater Tele-operated Manipulators on an ROV," Ocean Engineering, Vol. 37, pp. 1036-1047. https://doi.org/10.1016/j.oceaneng.2010.03.017
  2. Wernli, R., Jaeger, J., 1984, "ROV Technology Update from an International Perspective," Proceeding of the MTS/IEEE OCEANS 84, pp. 639-645.
  3. Lee, P.M., Jun, B.H., Park, J.Y., Shim, H.S. Shim, Kim, J.S., Jung, H.S., Yoon, J.Y., 2011, "An in-situ Correction Method of Position Error for an Autonomous Underwater Vehicle Surveying the Sea Floor," International Journal of Ocean System Engineering, Vol. 1, No. 2, pp. 60-67. https://doi.org/10.5574/IJOSE.2011.1.2.060
  4. Loebis, D., Sutton, R., Chudley, J., Naeem, W., 2004, "Adaptive Tuning of Kalman Filter via Fuzzy Logic for an Intelligent AUV navigation System," Control Engineering Practice, Vol. 12, No. 12, pp. 1531-1539. https://doi.org/10.1016/j.conengprac.2003.11.008
  5. Jun, B. H., Shim, H.W., Lee, P.M., 2011, "An Approximation of Generalized Torques by the Hydrodynamic Forces Acting on Legs of Underwater Walking Robot," International Journal of Ocean System Engineering, Vol. 1, No. 4, pp. 222-229. https://doi.org/10.5574/IJOSE.2011.1.4.222
  6. Yoo, S. Y., Jun, B. H., Shim, H. W. and Lee, P. M., 2014, "Finite Element Analysis of CFRP Frame under Launch and Recovery Conditions for Subsea Walking Robot, Crabster," Trans. Korean Soc. Mech. Eng. A, Vol. 38, No. 4, pp. 419-425. https://doi.org/10.3795/KSME-A.2014.38.4.419
  7. Shugen, M., Takashi, T. and Hideyuki, W., 2005, "Omnidirectional Static Walking of a Quadruped Robot," IEEE Trans. on Robotics, Vol. 21, No. 2, pp.152-161. https://doi.org/10.1109/TRO.2004.835448
  8. Gonzalez de Santos, P., Garcia, E. and Estremera, Joaquin, 2006, "Quadrupedal Locomotion," Springer, Verlag London.
  9. Chen, W., Ren, G., Zhang, J., and Wahn, J., 2012, "Smooth Transition Between Different Gaits of a Hexapod Robot via a Centrol Pattern Generators Algorithm," Journal of Intelligent Robot Systems, Vol. 68, pp.255-270.
  10. Estremera, J., Cobano, J. and Gonzalez de Santos, P., 2008, "Continuous Free-Crab Gaits for Hexapod Robots on a Natural Terrain with Forbidden Zones : An Application to Humanitarian Demining," Robotics and Autonomous Systems, Vol. 58, pp.700-711.
  11. Yang, J., 2008, "Omnidirectional Walking of Legged Robots with a Failed Leg," Mathematical and Computer Modelling, Vol. 47, pp.1372-1388. https://doi.org/10.1016/j.mcm.2007.08.006
  12. Shim, H. W., Lee, K. M., Yoo, S. Y. and Jun, B. H., "Redundancy Generation and Application Method of Underwater Exploration Equipment by Using the Posture Control of CR200," Proc. of Kor. Soc. Of Ocean Eng. Conf., pp.1743-1746.
  13. Shim, H. W., Yoo, S. Y., Lee, K. M., Baek, H. and Jun, B. H., 2013, "Posture and Walking Control Method of CR200 for Precise Underwater Exploration," Proc. of Kor. Unmanned Underwater Vehicle Conf., pp. 114-118.