• Title/Summary/Keyword: Static Var Compensator(SVC)

Search Result 107, Processing Time 0.023 seconds

A Study of Insulation Breakdown Cause Analysis and Measure of 362kV 50kA Circuit Breaker for Shunt Reactor Switching (362kV 50kA 다빈도 차단기 고장원인 분석 및 대책에 관한 연구)

  • Choi, Young-Sung;Jeon, Sang-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.408-409
    • /
    • 2015
  • 한국전력공사에서는 2015년 4월말 기준 808개의 변전소를 운전 중에 있다. 변압기 용량으로 보면 299,734MVA에 달하고 있으며, 매년 증가하는 전력수요에 맞추어 신규 변전소 건설과 더불어 변전설비가 계속하여 확충되고 있다. 또한, 계절별 및 시간대별 부하변동에 따른 변전소 모선의 전압변동에 대응하기 위하여 Sh.C(Shunt Condenser), Sh.R(Shunt Reactor), SVC(Static Var Compensator) 등 다양한 무효전력보상 및 조절 설비들이 지속적으로 설치되고 있다. 이들 무효전력보상 설비들은 주로 변전소 모선에 전용 차단기를 통하여 연결되어 운전되고 있으며, 전용 차단기는 매일 시간대별 부하변동에 대응하여 개폐빈도가 많은 다빈도 차단기로서 잦은 개폐조작에 따른 내구성이 필요하며 변전소 모선전압을 기준전압 범위 이내로 안정적으로 유지하기 위한 신뢰성이 요구되고 있다. 본 논문에서는 345kV Sh.R 개폐용 동일유형의 345kV 50kA 1점절 다빈도 차단기에서 차단조작시 발생한 차단부 절연파괴 고장의 원인을 분석하고 재발방지를 위한 대책에 대하여 논하였다.

  • PDF

A Study on the Modeling and Operation Algorithm of Independent Power System for Carbon Free (Carbon Free를 위한 도서지역용 독립전원계통의 모델링 및 운용알고리즘에 관한 연구)

  • Wang, Jong-Yong;Kim, Byung-Ki;Park, Jea-Bum;Kim, Byung-Mok;Kim, Eung-Sang;Rho, Dae-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.760-768
    • /
    • 2016
  • Recently, as one of the policies for carbon free operation method of independent power system replacing diesel generator with renewable energy such as wind power and photovoltaic(PV) system has been presented. Therefore, this paper proposes an operation algorithm and modeling of independent power system by considering CVCF(constant voltage constant frequency) ESS(energy storage system) for constant frequency and voltage, LC(load control) ESS for demand and supply balancing and SVC(static var compensator) for reactive power compensation. From the simulation results based on the various operation scenario, it is confirmed that proposed operation algorithm and modeling may contribute stable operation and carbon free in independent power system.

HVDC System Design for AC Network Reactive Power Control (AC 계통 무효전력 제어를 위한 HVDC 시스템 설계)

  • Choi, Soon-Ho;Choi, Jang-Hum;Kim, Chan-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.8-20
    • /
    • 2013
  • This paper deals with the concept design of HVDC system for controlling AC network reactive power. HVDC system can control active power and reactive power and the control concept of reactive power is similar to SVC(Static Var Compensator). Reactive power is controlled by adjusting firing angle of HVDC system under the condition that AC filters are switched. Reactive power depends on AC voltage condition, considering the steady-state and transient state to maintain the stable operation of AC network in the viewpoint of voltage stability. Therefore, in the design stage of HVDC, the reactive power required in the AC network must be considered. For the calculation of operation angle in HVDC system, the expected reactive power demand and supply status is examined at each AC system bus. The required reactive power affects the determination of the operation angle of HVDC. That is, the range of "control deadband" of operation angle should have the capability supplying the required reactive power. Finally, the reactive power control concepts is applied to 1GW BTB Pyeongtaek-Dangjin HVDC system.

Device characteristics of 2.5kV Gate Commutated Thyristor (2-5kV급 Gate Commutated Thyristor 소자의 제작 특성)

  • Kim, Sang-Cheol;Kim, Hyung-Woo;Seo, Kil-Soo;Kim, Nam-Kyun;Kim, Eun-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.280-283
    • /
    • 2004
  • This paper discribes the design concept, fabrication process and measuring result of 2.5kV Gate Commutated Thyristor devices. Integrated gate commutated thyristors(IGCTs) is the new power semiconductor device used for high power inverter, converter, static var compensator(SVC) etc. Most of the ordinary GTOs(gate turn-off thyristors) are designed as non-punch-through(NPT) concept; i.e. the electric field is reduced to zero within the N-base region. In this paper, we propose transparent anode structure for fast turn-off characteristics. And also, to reach high breakdown voltage, we used 2-stage bevel structure. Bevel angle is very important for high power devices, such as thyristor structure devices. For cathode topology, we designed 430 cathode fingers. Each finger has designed $200{\mu}m$ width and $2600{\mu}m$ length. The breakdown voltage between cathode and anode contact of this fabricated GCT device is 2,715V.

  • PDF

Optimal Location of FACTS Devices Using Adaptive Particle Swarm Optimization Hybrid with Simulated Annealing

  • Ajami, Ali;Aghajani, Gh.;Pourmahmood, M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.179-190
    • /
    • 2010
  • This paper describes a new stochastic heuristic algorithm in engineering problem optimization especially in power system applications. An improved particle swarm optimization (PSO) called adaptive particle swarm optimization (APSO), mixed with simulated annealing (SA), is introduced and referred to as APSO-SA. This algorithm uses a novel PSO algorithm (APSO) to increase the convergence rate and incorporate the ability of SA to avoid being trapped in a local optimum. The APSO-SA algorithm efficiency is verified using some benchmark functions. This paper presents the application of APSO-SA to find the optimal location, type and size of flexible AC transmission system devices. Two types of FACTS devices, the thyristor controlled series capacitor (TCSC) and the static VAR compensator (SVC), are considered. The main objectives of the presented method are increasing the voltage stability index and over load factor, decreasing the cost of investment and total real power losses in the power system. In this regard, two cases are considered: single-type devices (same type of FACTS devices) and multi-type devices (combination of TCSC, SVC). Using the proposed method, the locations, type and sizes of FACTS devices are obtained to reach the optimal objective function. The APSO-SA is used to solve the above non.linear programming optimization problem for better accuracy and fast convergence and its results are compared with results of conventional PSO. The presented method expands the search space, improves performance and accelerates to the speed convergence, in comparison with the conventional PSO algorithm. The optimization results are compared with the standard PSO method. This comparison confirms the efficiency and validity of the proposed method. The proposed approach is examined and tested on IEEE 14 bus systems by MATLAB software. Numerical results demonstrate that the APSO-SA is fast and has a much lower computational cost.

A Stable Operation Strategy in Micro-grid Systems without Diesel Generators

  • Choi, Sung-Sik;Kang, Min-Kwan;Lee, Hu-Dong;Nam, Yang-Hyun;Rho, Dae-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.114-123
    • /
    • 2018
  • Recently, as one of the countermeasures to reduce carbon dioxide($CO_2$) for global warming problems, operation methods in micro-grid systems replacing diesel generator with renewable energy sources including wind power(WP) and photovoltaic(PV) system have been studied and presented in energetic manners. However, it is reported that some operation problems in micro-grid systems without diesel generator for carbon-free island are being occurred when large scaled WP systems are at start-up. To overcome these problems, this paper proposes an operation strategy in micro-grid systems by adapting control devices such as CVCF(constant voltage constant frequency) ESS(energy storage system) for constant frequency and voltage regulation, load control ESS for balancing demand and supply and SVC(static-var compensator) for reactive power compensation. From the simulation results based on the various operation scenarios, it is confirmed that the proposed operation strategy in micro-grid systems without diesel generators is a useful tool to perform a stable operation in micro-grid systems without diesel generator and also make a contribution to reduce carbon dioxide in micro-grid systems.

A Study on the Power Factor Improvement of V47-660 kW Wind Turbine Generation System in Jeju Wind Farm (제주 풍력발전 단지의 V47-660 kW 시스템의 역률개선에 관한 연구)

  • Kim, Eel-Hwan;Jeon, Young-Jin;Kim, Jeong-Woong;Kang, Geong-Bo;Huh, Jong-Chul;Kim, Gun-Hoon
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.3
    • /
    • pp.45-53
    • /
    • 2003
  • This paper presents a study on the power factor improvement of V47- 660 [kW] Wind Turbine Generation System (WTGS) in Jeju wind farm, as a model system in this paper. In this system, the power factor correction is controlled by the conventional method with power condensor banks. Also, this system has only four bank steps, and each one capacitor bank step is cut in every one second when the generator has been cut in. This means that it is difficult to compensate the reactive power exactly according to the variation of them. Actually, model system has very low power factor in the area of low wind speed, which is almost from 4 to 6 [m/s]. This is caused by the power factor correction using power condenser bank. To improve the power factor in the area of low wind speed, we used the static var compensator(SVC) using current controlled PWM power converter using IGBT switching device. Finally, to verify the proposed method, the results of computer simulation using Psim program are presented to support the discussions.