• 제목/요약/키워드: Static Structural

검색결과 2,348건 처리시간 0.032초

Experimental Study on the Structural Safety of the Tractor Front-End Loader Against Impact Load

  • Park, Young-Jun;Shim, Sung-Bo;Nam, Ju-Seok
    • Journal of Biosystems Engineering
    • /
    • 제41권3호
    • /
    • pp.153-160
    • /
    • 2016
  • Purpose: This study was conducted to experimentally investigate the structural safety of and identify critical locations in a front-end loader under impact loads. Methods: Impact and static tests were conducted on a commonly used front-end loader mounted on a tractor. In the impact test, the bucket of the front-end loader with maximum live load was raised to its maximum lift height and was allowed to free fall to a height of 500 mm above the ground where it was stopped abruptly. For the static test, the bucket with maximum live load was raised and held at the maximum lift height, median height, and a height of 500 mm from the ground. Strain gages were attached at twenty-three main locations on the front-end loader, and the maximum stresses and strains were measured during respective impact and static tests. Results: Stresses and strains at the same location on the loader were higher in the impact test than in the static test, for most of measurement locations. This indicated that the front-end loader was put under a severe environment during impact loading. The safety factors for stresses were higher than 1.0 at all locations during impact and static tests. Conclusions: Since the lowest safety factor was higher than 1.0, the front-end loader was considered as structurally safe under impact loads. However, caution must be exercised at the locations having relatively low safety factors because failure may occur at these locations under high impact loads. These important design locations were identified to be the bucket link elements and the connection elements between the tractor frame and front-end loader. A robust design is required for these elements because of their high failure probability caused by excessive impact stress.

평균 응력을 고려한 음향 하중을 받는 항공기 센서 포드 외피 구조의 내구 수명 분석 (Fatigue Life Prediction for the Skin Structures of Aircraft Sensor Pod Under Acoustic Load with Mean Stress)

  • 전민혁;김연주;조현준;이미연;김인걸;이한솔;조재명;배종인;박기영
    • 한국군사과학기술학회지
    • /
    • 제26권1호
    • /
    • pp.1-9
    • /
    • 2023
  • The skin structure of sensor pod mounted on the exterior of aircraft can be exposed to the acoustic dynamic load and static load such as aerodynamic pressure and inertial load during flight. Fatigue life prediction of structural model under acoustic load should be performed and also differential stiffness of model modified by static load should be considered. The acoustic noise test spectrum of MIL-STD-810G was applied to the structural model and the stress response power spectral density (PSD) was calculated. The frequency response analysis was performed with or without prestress induced by inplane static load, and the response spectrum was compared. Time series data was generated using the calculated PSD, and the time and frequency domain fatigue life were predicted and compared. The variation of stress response spectrum due to static load and predicted fatigue life according to the different structural model considering mean stress were examined and decreasing fatigue life was observed in the model with prestress of compressive static load.

기계식 인공심장판막의 경량화 설계를 위한 구조해석 (Structural Analysis for Thickness Minimization Design of a Bileaflet Mechanical Heart)

  • 권영주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.643-646
    • /
    • 2001
  • This paper investigates the structural analysis and design of mechanical heart valve through the numerical analysis methodology. In a numerical analysis methodology application to the thickness minimization structural design of mechanical heart valve, structural analysis is performed for the blood flow through a bileaflet mechanical heart valve. The structural static analysis is carried out to confirm the thickness minimization structural condition (minimum thickness shape of leaflet).

  • PDF

Study on seismic behavior and seismic design methods in transverse direction of shield tunnels

  • He, Chuan;Koizumi, Atsushi
    • Structural Engineering and Mechanics
    • /
    • 제11권6호
    • /
    • pp.651-662
    • /
    • 2001
  • In order to investigate the seismic behavior and seismic design methods in the transverse direction of a shield tunnel, a series of model shaking table tests and a two-dimensional finite element dynamic analysis on the tests are carried out. Two kinds of static analytical methods based on ground-tunnel composite finite element model and beam-spring element model are proposed, and the validity of the static analyses is verified by model shaking table tests. The investigation concerns the dynamic response behavior of a tunnel and the ground, the interaction between the tunnel and ground, and an evaluation of different seismic design methods. Results of the investigation indicate that the shield tunnel follows the surrounding ground in displacement and dynamic characteristics in the transverse direction; also, the static analytical methods proposed by the authors can be used directly as the seismic design methods in the transverse direction of a shield tunnel.

강철도교의 정.동적 응답에 관한 연구 (A Study on Static and Dynamic Responses of Steel Railway Bridges)

  • 장동일;최강희;이희현
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1989년도 봄 학술발표회 논문집
    • /
    • pp.61-65
    • /
    • 1989
  • In this study, measured and calculated responses are compared in order to give how the static and dynamic responses occurred in steel railway bridges Sue to train loads could be calculated appropriately. From this, it is known that the static response ratios (measures / calculated) is high comparing to the highway blisses, and the dynamic response should be obtained by the moving mass problem. And it is known that the factors specifies in the present railway bridge code are very safe under the present service speed below 100 km/h, but are not under the rapid transit system above 100 km/h.

  • PDF

약진지역에 있어서의 시간이력 해석과 UBC 규준 해석의 비교 (A Comparison of Time History Analysis to UBC-88 Requirements in a Low Seismic Zone)

  • 김희철
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1991년도 가을 학술발표회 논문집
    • /
    • pp.90-95
    • /
    • 1991
  • The Uniform Building Code (UBC) is the most widely used requirements for earthquake resistant design in the United States. In this paper, a mid-rise steel building is analyzed by applying 12 sets of actual strong-motion earthquake data that have been scaled to acne 2B levels. The simply extrapolated ground motion displacements are used for the dynamic loads. The results of dynamic analyses for a 10-story steel building are compared with the static and dynamic analysis requirements of UBC-88. It was found that computed lateral fortes using UBC-88 static procedure differed by about 60 percent depending on whether the natural period was computed using the UBC empirical method or the UBC recommended Rayleigh's method. The lateral fortes computed from the UBC response spectra were more than 10 times greater than those computed by UBC static procedures. The lateral forces obtained from both linear and nonlinear analyses using 1989 Loma Prieta ground mot ions compared very well with UBC response spectra results.

  • PDF

Damage assessment of linear structures by a static approach, II: Numerical simulation studies

  • Tseng, Shih-Shong
    • Structural Engineering and Mechanics
    • /
    • 제9권2호
    • /
    • pp.195-208
    • /
    • 2000
  • To confirm the theory and static defect energy (SDE) equations proposed in the first part, extensive numerical simulation studies are performed in this portion. Stiffness method is applied to calculate the components of the stresses and strains from which the energy components and finally, the SDE are obtained. Examples are designed to cover almost all kinds of possibilities. Variables include structural type, material, cross-section, support constraint, loading type, magnitude and position. The SDE diagram is unique in the way of presenting damage information: two different energy constants are separated by a sharp vertical drop right at the damage location. Simulation results are successfully implemented for both methods in all the cases.

비아50 구조 구성품 정적강도 시험

  • 강왕구;김동민;이진우;염찬홍
    • 항공우주기술
    • /
    • 제3권1호
    • /
    • pp.27-34
    • /
    • 2004
  • 50m 무인 비행선 비아50의 주 구조물인 꼬리날개, 곤돌라, 추력모터마운트(EMS) 등은 탄소 및 유리 섬유 복합재를 이용하여 설계/제작되었다. 사용된 재료 시편 강도 시험을 수행하여 설계 물성치를 확정하였다. 각각의 구조물들에 대하여 정하중 시험을 수행하여 구조 건전성을 입증하였다. 각 단품별로 정하중 시험을 수행하였으며, 보다 정확한 시험을 위하여 조립상태를 고려한 경계조건을 모사하였다. 100% DLL에서 영구변형이 발생하지 않음을 보였고, 150% DLL에서 파손이 발생하지 않음을 입증하였다.

  • PDF

A unified formulation for static behavior of nonlocal curved beams

  • Tufekci, Ekrem;Aya, Serhan A.;Oldac, Olcay
    • Structural Engineering and Mechanics
    • /
    • 제59권3호
    • /
    • pp.475-502
    • /
    • 2016
  • Nanobeams are widely used as a structural element for nanodevices and nanomachines. The development of nano-sized machines depends on proper understanding of mechanical behavior of these nano-sized beam elements. Small length scales such as lattice spacing between atoms, surface properties, grain size etc. are need to be considered when applying any classical continuum model. In this study, Eringen's nonlocal elasticity theory is incorporated into classical beam model considering the effects of axial extension and the shear deformation to capture unique static behavior of the nanobeams under continuum mechanics theory. The governing differential equations are obtained for curved beams and solved exactly by using the initial value method. Circular uniform beam with concentrated loads are considered. The displacements, slopes and the stress resultants are obtained analytically. A detailed parametric study is conducted to examine the effect of the nonlocal parameter, mechanical loadings, opening angle, boundary conditions, and slenderness ratio on the static behavior of the nanobeam.

전단변형을 고려한 비대칭 박벽보의 엄밀한 정적 요소강도행렬 (Exact Static Element Stiffness Matrix of Shear Deformable Nonsymmetric Thin-walled Elastic Beams)

  • 김남일;곽태영;이준석;김문영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.345-352
    • /
    • 2001
  • Derivation procedures of exact static element stiffness matrix of shear deformable thin-walled straight beams are rigorously presented for the spatial buckling analysis. An exact static element stiffness matrix is established from governing equations for a uniform beam element with nonsymmetric thin-walled cross section. First this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, the displacement functions of dispalcement parameters are exactly derived and finally exact stiffness matrices are determined using member force-displacement relationships. The buckling loads are evaluated and compared with analytic solutions or results of the analysis using ABAQUS' shell elements for the thin-walled straight beam structure in order to demonstrate the validity of this study.

  • PDF