• Title/Summary/Keyword: Static Strength Evaluation

Search Result 281, Processing Time 0.025 seconds

Evaluation of Static Strength Applying to Fracture Mechanics on Ceramic/Metal bonded Joint (세라믹/금속 접합재에 대한 정적강도의 파괴역학적 평가)

  • 김기성
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.4
    • /
    • pp.53-62
    • /
    • 1996
  • Recently, ceramic / metal bonded joints have led to inccreasing use of structural materials such as automobile, heat engine in various industries. In this paper, a method to analyze an interface crack under both residual stresses and applied loading was proposed. and some results of boundary element method(BEM) analysis Were presented, Fracture thoughness tests of ceramic/metals bonded joints with an interface crack Were carried out, and the stress intensity factors of these joints Ware analyzed by BEM. Also crack propagtion direction was simulated numerically by using BEM. Crack propagation angle was able to easily determine based on the maximum stress concept. The prediction of fracture strength by the fracture thoughness of the ceramics/metals bonded joints was proposed.

  • PDF

Static Tests on SRC Columns (SRC 기둥에 대한 정적실험)

  • Jung In Keun;Min Jin;Shim Chang Su;Chung Young Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.97-100
    • /
    • 2004
  • Steel encased composite columns are widely used due to their excellent structural performance in terms of stiffness, strength, and ductility. However, experimental studies were usually for the columns having higher steel ratio $(3-4\%)$. There are two different design concepts for SRC columns. ACI-318 specifies the design strength of the column using the same concept of reinforced concrete columns. AISC-LRFD specifies the P-M diagram using the concept of steel column. In this paper, SRC columns have the steel ratio of $0.53\%\;and\;1.06\%$. From the test results, ACI-318 specifications showed better evaluation of SRC columns having low steel ratio. H beam and steel tube partially filled with concrete were embedded in concrete. Flexural tests showed considerably high ductility.

  • PDF

Behavior of Columns Due to Variation of Performance Influencing Factors Based on Performance Based Design (성능기반설계에 기초한 성능영향인자 변화에 따른 기둥의 거동분석)

  • Yun, Sung-Hwan;Choi, Min-Choul;Kang, Yoon-Sig;Park, Tae-Hyo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.489-498
    • /
    • 2010
  • The performance evaluation of reinforcement concrete structure is carried out as a function of the following performance influencing factors: (1) the strength of concrete, (2) longitudinal reinforcement, (3) transverse reinforcement, (4) aspect ratio, and (5) axial force. With various values of the five parameters, eigenvalue analysis and non-linear static analysis were performed to investigate the structural yield displacement, yield basis shear force, and static performance of ductility ratio. In addition, the performance evaluation is carried out according to the modified capacity spectrum method (FEMA-440) using the results of non-linear static analysis, and the effect of each parameter on performance point is analyzed. Based on the result of eigenvalue analysis and non-linear static analysis indicates, that the natural period and the ductility ratio are affected more by the structural properties than the material properties. In case of the analysis of the criterion of performance points, the effect of section shape is one of the important factors together with natural period and ductility ratio.

An Experimental Study on the Strength Evaluation of Mechanical Press Joint (기계적 프레스 접합부의 강도 평가에 관한 실험적 연구)

  • Park, Yeong-Geun;Jeong, Jin-Seong;Kim, Ho-Gyeong;Lee, Yong-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.438-448
    • /
    • 2000
  • Mechanical press joining technique has been used in sheet metal joining processes because of its simple process and possibility of joining dissimiliar metals, such as steel and aluminum. The static and cyclic behavior of single overlap AI-alloy and steel(SPCC) joints has been investigate. Relationships were developed to estimate the strength of the joint taking into consideration base metal strength properties and the geometry of the joint. Fatigue test results have shown that fatigue resistance of the SPCC mechanical press joints is almost equal to that of the spot weld at the life of $10^6$ cycles. Also, the dissimilar material jointed specimen with upper SPCC plate and button diameter corresponding to the nugget diameter of the spot welded specimen has almost same strength as the same material jointed specimen and as the spot welded specimen.

Evaluation of Fatigue Strength in Scallop at Field Bolted Joints of Longitudinal Rib and Deck Plate in Orthotropic Steel Decks (강바닥판 데크플레이트와 종리브 현장연결 스캘럽부의 피로강도 평가)

  • Choi, Dong Ho;Choi, Hang Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.683-690
    • /
    • 2002
  • Static and fatigue tests were performed to evaluate fatigue strength in scallop at field bolted joints of longitudinal rib and deck plate in orthotropic steel decks. Numerical parametric studies using finite elemtn analysis were also conducted to show the influence of parameters such as length and radius of scallop, and thickness of deckplate on the stress concentration at the scallop. In the low stress level, fatigue tests yielded cracks at the scallop while in the high stress level, catastrophic failure of longitudinal rib occurred following the failure of handhole cover plate. Fatigue strength was compared with JSSC specification and the predicted S-N curves using Shigley and Juvinall methods, and a satisfactory result was obtatined.

Nondestructive Bending Strength Evaluation of Miscanthus sinensis var. purpurascens Ceramics Made from Different Carbonizing Temperatures (탄화온도별로 제조된 거대억새 세라믹의 비파괴 휨강도 평가)

  • Won, Kyung-Rok;Oh, Seung-Won;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.723-731
    • /
    • 2014
  • Nondestructive evaluation (NDE) technique method using a resonance frequency mode was carried out for ceramics made by different carbonizing temperatures (600, 800, 1000, $1200^{\circ}C$) after impregnating the phenol resin with Miscanthus sinensis var. purpurascen particle boards. Dynamic modulus of elasticity increased with increasing carbonizing temperature. There were a close relationship of dynamic modulus of elasticity and static bending modulus of elasticity to modulus of rupture (MOR). However, the result indicated that correlation coefficient was higher in dynamic modulus of elasticity to MOR than that in static modulus of elasticity to MOR. Therefore, the dynamic modulus of elasticity using resonance frequency by free vibration mode is more useful as a nondestructive evaluation method for predicting the MOR of ceramics made by different carbonizing temperature for Miscanthus sinensis var. purpurascens particle boards.

Effect of Multiple Circular Holes on Fatigue Crack Growth Path

  • Won, Young-Jun;Nishioka, Toshihisa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.112-119
    • /
    • 2009
  • The mechanical fastening has some advantages in respect of the fastening strength and disassemble of the fastened parts. However, at the same time it has some dangerous factors, can cause fatigue crack initiation and propagation due to not only the static loading such as cargo and passengers but also the dynamic loading like vibrations which occur in the engines and the propellers. For this reason, the strength evaluation for the mechanical fastenings along with the sophisticated and detailed mechanical design and the safety evaluation should be executed, In this paper, we were carried out experiments to study fatigue crack growth paths in structures containing the multiple circular holes. It was investigated that how circular holes are affected on fatigue crack growth paths using the specimen consists of A5052-H112, which is widely used as the ship materials. It was found from the experimental results that the fatigue crack as if it is drawn to circular holes when crack tip approach to circular holes. However, it did not go into circular hole if there is the next circular hole. Therefore, the clarification of mechanism on the fatigue crack initiation and the propagation in structures containing the multiple circular holes can be expected in this study.

A study on performance evaluation of rod rubber bushing under static and fatigue loadings (토크 로드 부품의 정하중 및 피로하중하에서의 성능평가 연구)

  • 이순복;김완두
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1320-1329
    • /
    • 1990
  • A static performance tester for a torque rod assembly was developed to evaluate the three characteristics of the rod rubber bushing : radial spring characteristic, thrust spring characteristic, and rotational torque characteristic. Among the various schemes considered in the conceptual design stage, the final versatile type was determined to perform three different tests in one machine. The performance testing machine carried out radial spring test, thrust spring test, and torque test of the torque rod assembly. Static performance of the torque rod assembly was evaluated with the tester developed and fatigue strength of the assembly was also tested with the servo-hydraulic structural fatigue testing machine. The life of the component was found to be related with the rubber quality and adhesionability between the rubber and the steel rod. The optimum rubber hardness was experimentally found by changing the chemical compositions of rubber, and the adhesion was improved by optimizing the shape of the outer section of a the rubber, this study ensured the development of a reliable torque rod assembly.

Evaluation of Static Strength of Mixed Stud Shear Connection in Double Composite Bridges (이중합성 교량의 복합스터드 전단연결부의 정적강도 평가)

  • Kim, Hyun Ho;Shim, Chang Su;Yun, Kwang Jung;Lee, Pil Goo
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.549-559
    • /
    • 2005
  • A railway bridge with a double composite section is proposed to enhance the structural performance of existing two-girder bridges because the governing design parameter of railway bridges is the flexural stiffness. The concrete deck in negative moment regions is neglected in the design of continuous composite bridges assuming the concrete slab has no resistance to tension. Therefore, the flexural stiffness of the composite section in the negative moment region is reduced resulting in the increase of the depth of the steel section. In order to resolve this disadvantage, several methods are suggested and the double composite section is one of the excellent solutions for extending the span length and increasing the flexural stiffness. In this study, push-out tests on lying studs and mixed stud shear connection with lying and vertical studs were performed to investigate the behavior of the shear connection in the double composite section. Static strength of the shear connection was evaluated through the test results and numerical analyses.

Evaluation on Fatigue Performance in Compression of Normaland Light-weight Concrete Mixtures with High Volume SCM (혼화재를 다량 치환한 경량 및 보통중량 콘크리트의 압축피로 특성 평가)

  • Mun, Jae-Sung;Yang, Keun-Hyeok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.4
    • /
    • pp.354-359
    • /
    • 2014
  • The objective of this study is to examine the fatigue behavior in compression of normal-weight and lightweight concrete mixtures with high volume supplementary cementitious material(SCM). The selected binder composition was 30% ordinary portland cement, 20% fly-ash, and 50% ground granulated blast-furnace slag. The targeted compressive strength of concrete was 40 MPa. For the cyclic loading, the constant maximum stress level varied to be 75%, 80%, and 90% of the static uniaxial compressive strength, whereas the constant minimum stress level was fixed at 10% of the static strength. The test results showed that fatigue life of high volume SCM lightweight concrete was lower than the companion normalweight concrete. The value of the fatigue strain at the maximum stress level intersected the descending branch of the monotonic stress-strain curve after approximately 90% of the fatigue life.