• Title/Summary/Keyword: Static Routing

Search Result 84, Processing Time 0.028 seconds

A Hybrid Course-Based Routing Protocol Suitable for Vessel Ad Hoc Networks (선박 애드 혹 네트워크에 적합한 복합적 항로기반 경로배정 프로토콜)

  • Son, Joo-Young;Mun, Seong-Mi
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.775-784
    • /
    • 2008
  • It is not easy to access very high speed Internet services at sea due to some technical and economical problems. In order to realize the very high speed Internet services at sea like on land, new communication network models based on MANET should be adopted. In this paper, a new MANET model at sea is provided, which considered the ocean environments, and the characteristics and movement of vessels. On the basis of the fact that most vessels navigate on the predetermined courses, which are the shortest paths between source and destination ports in most cases, a type of location oriented routing protocol is proposed in this paper. The Hybrid Course-Based Routing Protocol(HCBR) makes use of the static information such as courses and positions of ports to proactively find the shortest paths not only among ports but also the cross points of courses. HCBR also makes use of the locational information of vessels obtained via GPS and AIS systems to reactively discover the shortest route by which data packets are delivered between them. We have simulated the comparison of the performance of HCBR with those of LAR scheme 1 and scheme2, the most typical protocols using geographical information. The simulation results show that HCBR guarantees the route discovery even without using any control packet. They also show that HCBR is more reliable(40%) and is able to obtain more optimal routes(10%) than LAR scheme1 and scheme2 protocols.

Load Balancing in MPLS Networks (MPLS 네트워크에서의 부하 분산 방안)

  • Kim, Sae-Rin;Song, Jeong-Hwa;Lee, Mee-Jeong
    • The KIPS Transactions:PartC
    • /
    • v.9C no.6
    • /
    • pp.893-902
    • /
    • 2002
  • MPLS enables efficient explicit routing, and thus provides great advantages in supporting traffic engineering. Exploiting this capability, we Propose a load balancing scheme which deploys a multipath routing. It is named LBM (Load Balancing in MPLS networks), and targets at efficient network utilization as well as performance enhancement. LBM establishes multiple LSP (Label Switched Path)s between a pair of ingress-egress routers, and distributes traffic over these LSPs at the new level. Its routing decision is based on both the length and the utilization of the paths. In order to enhance the efficiency of a link usage, a link is limited to be used by shorter paths as its utilization becomes higher Longer paths are considered to be candidate alternative paths as the utilization of shorter paths becomes higher. Simulation experiments are performed in order to compare the performance of LBM to that of static shortest path only scheme as well as the other representative dynamic multipath traffic distribution approaches. The simulation results show that LBM outperforms the compared approaches, and the performance gain is more significant when the traffic distribution among the ingress-egress pairs is non-uniform.

Channel Assignment and Routing using Traffic Profiles in Wireless Mesh Networks (무선 메쉬 네트워크에서 트래픽 프로파일을 고려하는 채널 할당 및 라우팅)

  • Park, Sook-Young;Lee, Sang-Kyu
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.5
    • /
    • pp.374-385
    • /
    • 2010
  • Wireless mesh networks can be deployed for various networks from home networking to last-mile broadband Internet access. Wireless mesh networks are composed of mesh routers and mesh clients. In these networks, static nodes form a multi-hop backbone of a large wireless access network that provides connectivity to end-users' mobile terminals. The network nodes cooperate with each other to relay data traffic to its destinations. In order to increase connectivity and better performance, researchers are getting interested in multi-channel and multi-interface wireless mesh networks. In these networks, non-overlapping multiple frequency channels are used simultaneously to increase the aggregate bandwidth available to end-users. Recently, researches have focused on finding suitable channel assignments for wireless network interfaces, equiped in a mesh node, together with efficient routing to improve overall system throughput in wireless mesh networks. This goal can be achieved by minimize channel interference. Less interference among using channels in a network guarantees more aggregated channel capacity and better connectivity of the networks. In this thesis, we propose interference aware channel assignment and routing algorithms for multi-channel multi-hop wireless mesh networks. We propose Channel Assignment and Routing algorithms using Traffic Profiles(CARTP) and Routing algorithms allowing detour routing(CARTP+2). Finally, we evaluate the performance of proposed algorithms in comparison to results from previous methods using ns-2 simulations. The simulation results show that our proposed algorithms can enhance the overall network performance in wireless mesh networks.

Energy-Efficient Multipath Routing Protocol for Supporting Mobile Events in Wireless Sensor Networks (무선 센서 네트워크에서 이동 이벤트를 지원하기 위한 에너지 효율적인 멀티패스 라우팅 프로토콜)

  • Kim, Hoewon;Lee, Euisin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.12
    • /
    • pp.455-462
    • /
    • 2016
  • Wireless sensor networks have been researched to gather data about events on sensor fields from sources at sinks. Multipath routing is one of attractive approaches to reliably send data against the problem of frequent breakages on paths from sources to sinks due to node and link failures. As mobile events such as humans, animals, and vehicles are considered, sources may be continuously generated according to the movement of the mobile event. Thus, mobile events provide new challenging issue in multipath routing. However, the research on multipath routing mainly focus on both efficient multipath construction from sources to static sinks and fast multipath reconstruction against path breakages. Accordingly, the previous multipath routing protocols request each source continuously generated by a mobile event to construct individual multipath from the source to sinks. This induces the increase of multipath construction cost in the previous protocols in proportion to the number of source. Therefore, we propose efficient multipath routing protocol for supporting continuous sources generated by mobile events. In the proposed protocol, new source efficiently reconstructs its multipath by exploiting the existing multipath of previous sources. To do this, the proposed protocol selects one among three reconstruction methods: a local reconstruction, a global partial one, and a global full one. For a selection decision, we provide an analytical energy consumption cost model that calculates the summation of both the multipath reconstruction cost and the data forwarding cost. Simulation results show that the proposed protocol has better performance than the previous protocol to provide multipath routing for mobile events.

Energy-Efficient Grid-based Hole-Detouring Scheme in Wireless Sensor Networks (무선센서네트워크에서 에너지 효율적인 그리드 기반의 홀 우회 방식)

  • Kim, Sung-Hwi;Park, Ho-Sung;Lee, Jeong-Cheol;Kim, Sang-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4B
    • /
    • pp.227-235
    • /
    • 2012
  • Holes that generated by the unpredictable and harsh nature application environment or uneven energy consumption are an inevitable phenomenon in wireless sensor networks. Most of the existing schemes for this hole problem tend to use a static detour path to bypass a hole. The static detour path may lead to uneven energy consumption of the nodes on the boundary of the hole, thus it may enlarge the region of holes. At the same time, traffic would concentrate on the nodes on the boundary of the hole and tend to be depleted quickly. To solve this problem, we introduce energy-efficient grid-based geographic routing and hole-detouring scheme by taking advantage of grid anchor point in wireless sensor network with holes. The location of hole detour anchor node is dynamically shifted in grid cell. just generating dynamic hole detour paths to reduce total energy consumption. Simulation results are provided to validate the claims.

Link Quality Estimation in Static Wireless Networks with High Traffic Load

  • Tran, Anh Tai;Mai, Dinh Duong;Kim, Myung Kyun
    • Journal of Communications and Networks
    • /
    • v.17 no.4
    • /
    • pp.370-383
    • /
    • 2015
  • Effective link quality estimation is a vital issue for reliable routing in wireless networks. This paper studies the performance of expected transmission count (ETX) under different traffic loads. Although ETX shows good performance under light load, its performance gets significantly worse when the traffic load is high. A broadcast packet storm due to new route discoveries severely affects the link ETX values under high traffic load, which makes it difficult to find a good path. This paper presents the design and implementation of a variation of ETX called high load - ETX (HETX), which reduces the impact of route request broadcast packets to link metric values under high load. We also propose a reliable routing protocol using link quality metrics, which is called link quality distance vector (LQDV). We conducted the evaluation of the performance of three metrics - HETX, ETX and minimum hop-count. The simulation results show that HETX improves the average route throughput by up to 25% over ETX under high traffic load. Minimum hop-count has poor performance compared with both HETX and ETX at all of the different traffic loads. Under light load, HETX and ETX show the same performance.

A Development of Surface Temperature Monitoring System for Underground Tunnel Cable Joint using Wireless Sensor (무선센서를 이용한 지하전력구의 케이블 접속함 표면온도감시시스템 개발)

  • Kim, Young-Il;Song, Jae-Ju;Shin, Jin-Ho;Yi, Bong-Jae;Cho, Seon-Ku
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.1879-1884
    • /
    • 2007
  • In the electric power industry, it is important that the supply of energy must be guaranteed. Many power utilities control and supervise the transmission line to avoid power failures. In case of underground tunnel, some troubles are reported in cable joint. To stabilize the power, it is needed to monitor the cable joint. Many researches of cable joint monitoring have been going on by partial discharge measurement and temperature measurement using optical cable. These methods need much cost to install and maintain, so it is only used in critical transmission line. In this research, we use wireless sensor technology, because of its low cost and easy installation. We develop the temperature monitoring system for cable joint. Temperature sensor is installed on the surface of cable joint and sends data to server through router node using wireless network. Generally Ad hoc routing is searched in wireless network. However, in this research, we design the static linear routing mechanism, which is suitable for electric power line monitoring and analyze the life time of the sensor node by measuring the amount of the battery consumption.

Distribution of Inter-Contact Time: An Analysis-Based on Social Relationships

  • Wei, Kaimin;Duan, Renyong;Shi, Guangzhou;Xu, Ke
    • Journal of Communications and Networks
    • /
    • v.15 no.5
    • /
    • pp.504-513
    • /
    • 2013
  • Communication in delay tolerant networks (DTNs) relies on message transport by mobile nodes, and a correct understanding of the node mobility characteristics is therefore crucial to the design of an efficient DTN routing protocol. However, previous work has mainly focused on uncovering all behaviors of node movement, which is not conducive to accurately detecting the specific movement characteristics of a different node. In this paper, we seek to address this problem based on a consideration of social relationships. We first consider social ties from both static and dynamic perspectives. For a static perspective, in addition to certain accidental events, social relations are considered for a long time granularity and tend to be stable over time. For a dynamic perspective, social relations are analyzed in a relatively short time granularity and are likely to change over time. Based on these perspectives, we adopted different efficient approaches to dividing node pairs into two classes, i.e., familiar and unfamiliar pairs. A threshold approach is used for static social ties whereas a density-based aggregation method is used for dynamic social relationships. Extensive experimental results show that both familiar and unfamiliar node pairs have the same inter-contact time distribution, which closely follows a power-law decay up to a certain point, beyond which it begins to exponentially decay. The results also demonstrate that the inter-contact time distribution of familiar pairs decays faster than that of unfamiliar pairs, whether from a static or dynamic perspective. In addition, we also analyze the reason for the difference between the inter-contact time distributions of both unfamiliar and familiar pairs.

Controlled Bandwidth Borrowing with Extended RSVP-TE to Maximize Bandwidth Utilization

  • Kim Chul;Kim Young-Tak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1B
    • /
    • pp.64-72
    • /
    • 2004
  • Multiprotocol Label Switching (MPLS) has been developed as a key technology to enhance the reliability, manageability and overall quality of service of core If networks with connection-oriented tunnel LSP and traffic engineering such as constraint-based routing, explicit routing, and restoration. In this paper, we propose a control bandwidth borrowing scheme that maximizes the utilization of tunnel LSPs or physical links by an extension to the RSVP-TE label distribution protocol. MPLS-based core switching network and VPN services rely on the establishment of connection-oriented tunneled LSPs that are configured or predefined by network management systems. The mechanism of network management system varies from (i) a relatively static LSP establishment accounting, to (ii) a dynamic QoS routing mechanisms. With the use of hierarchical LSPs, the extra bandwidth that is unused by the trunk (outer) LSPs should be fully allocated to their constituent end-to-end user traffic (inner) LSPs in order to maximize their utilization. In order to find out the unused extra bandwidth in tunnel LSP or physical link and redistribute these resources to constituent LSPs, we expend the functionality of RSVP-TE and the found unused extra bandwidth is redistributed with a weight-based recursive redistribution scheme. By the extended RSVP-TE and proposed recursive redistributed scheme, we could achieve the instantaneous maximized utilization of tunnel LSP or physical link suffering from the potential under-utilization problem and guarantee the end-to-end QoS requirements. With the proposed scheme, network manager can manage more effectively the extra available bandwidth of hierarchical LSPs and maximize the instantaneous utilization of the tunneled LSP resources.